000 04257naaaa2200997uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/69369
005 20220714191456.0
020 _abooks978-3-03943-664-4
020 _a9783039436637
020 _a9783039436644
024 7 _a10.3390/books978-3-03943-664-4
_cdoi
041 0 _aEnglish
042 _adc
072 7 _aTBX
_2bicssc
100 1 _aPederson, Robert
_4edt
_91614456
700 1 _aPederson, Robert
_4oth
_91614456
245 1 0 _aProgress in Metal Additive Manufacturing and Metallurgy
260 _aBasel, Switzerland
_bMDPI - Multidisciplinary Digital Publishing Institute
_c2020
300 _a1 electronic resource (224 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aThe advent of additive manufacturing (AM) processes applied to the fabrication of structural components creates the need for design methodologies supporting structural optimization approaches that take into account the specific characteristics of the process. While AM processes enable unprecedented geometrical design freedom, which can result in significant reductions of component weight, on the other hand they have implications in the fatigue and fracture strength due to residual stresses and microstructural features. This is linked to stress concentration effects and anisotropy that still warrant further research. This Special Issue of Applied Sciences brings together papers investigating the features of AM processes relevant to the mechanical behavior of AM structural components, particularly, but not exclusively, from the viewpoints of fatigue and fracture behavior. Although the focus of the issue is on AM problems related to fatigue and fracture, articles dealing with other manufacturing processes with related problems are also be included.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by/4.0/
_2cc
_4https://creativecommons.org/licenses/by/4.0/
546 _aEnglish
650 7 _aHistory of engineering & technology
_2bicssc
_91129967
653 _aresidual stress/strain
653 _aelectron beam melting
653 _adiffraction
653 _aTi-6Al-4V
653 _aelectron backscattered diffraction
653 _aX-ray diffraction
653 _aSelective Laser Melting
653 _aTi6Al4V
653 _aresidual stress
653 _adeformation
653 _apreheating
653 _arelative density
653 _apowder degradation
653 _awire and arc additive manufacturing
653 _aadditive manufacturing
653 _amicrostructure
653 _amechanical properties
653 _aapplications
653 _aFe-based amorphous coating
653 _alaser cladding
653 _aproperty
653 _atitanium
653 _amicrostructural modeling
653 _ametal deposition
653 _afinite element method
653 _adislocation density
653 _avacancy concentration
653 _adirected energy deposition
653 _adefects
653 _ahardness
653 _aalloy 718
653 _ahot isostatic pressing
653 _apost-treatment
653 _aAlloy 718
653 _asurface defects
653 _aencapsulation
653 _acoating
653 _afatigue crack growth (FCG)
653 _aelectron beam melting (EBM)
653 _ahydrogen embrittlement (HE)
653 _awire arc additive manufacturing
653 _aprecipitation hardening
653 _aAl-Zn-Mg-Cu alloys
653 _amicrostructure characterisation
653 _atitanium alloy
653 _aTi55511
653 _asynchrotron
653 _aXRD
653 _amicroscopy
653 _aSLM
653 _aEBM
653 _aEBSD
653 _aRietveld analysis
653 _aWAAM
653 _aGMAW
653 _aenergy input per unit length
653 _aprocessing strategy
653 _acontact tip to work piece distance
653 _aelectrical stickout
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/3162
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/69369
_70
_zDOAB: description of the publication
999 _c3013682
_d3013682