000 04841naaaa2201201uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/54863
005 20220714174945.0
020 _abooks978-3-03928-938-7
020 _a9783039289370
020 _a9783039289387
024 7 _a10.3390/books978-3-03928-938-7
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aNúñez, Félix
_4auth
_91592423
700 1 _aRodriguez Jovita, Mar
_4auth
_91592424
245 1 0 _aNovel Approaches to Minimising Mycotoxin Contamination
260 _bMDPI - Multidisciplinary Digital Publishing Institute
_c2020
300 _a1 electronic resource (244 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aContamination of foods and agricultural commodities by various types of toxigenic fungi is a concerning issue for human and animal health. Moulds naturally present in foods can produce mycotoxins and contaminate foodstuffs under favourable conditions of temperature, relative humidity, pH, and nutrient availability. Mycotoxins are, in general, stable molecules that are difficult to remove from foods once they have been produced. Therefore, the prevention of mycotoxin contamination is one of the main goals of the agriculture and food industries. Chemical control or decontamination techniques may be quite efficient; however, the more sustainable and restricted use of fungicides, the lack of efficiency in some foods, and the consumer demand for chemical-residue-free foods require new approaches to control this hazard. Therefore, food safety demands continued research efforts for exploring new strategies to reduce mycotoxin contamination. This Special Issue contains original contributions and reviews that advance the knowledge about the most current promising approaches to minimize mycotoxin contamination, including biological control agents, phytochemical antifungal compounds, enzyme detoxification, and the use of novel technologies.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-nc-nd/4.0/
_2cc
_4https://creativecommons.org/licenses/by-nc-nd/4.0/
546 _aEnglish
653 _an/a
653 _adecontamination
653 _asuperheated steam
653 _aquercetin glycosides
653 _aantagonism
653 _amode of action
653 _acorn
653 _aBotrytis sp.
653 _aAITC
653 _abinding
653 _adegradation
653 _abrine shrimp bioassay
653 _aapple pomace
653 _ananoparticles
653 _aenzymatic detoxification
653 _aBacillus
653 _aestrogen response element
653 _aFusarium
653 _abiological detoxification
653 _aabiotic factors
653 _astability
653 _afumonisin esterase FumD
653 _amycotoxigenic fungi
653 _aAspergillus flavus
653 _aAflatoxin M1
653 _aFusarium graminearum
653 _amilk
653 _aPenicillium digitatum
653 _abiocontrol agents
653 _abiological control
653 _adry-cured ham
653 _amycotoxin reduction
653 _aFusarium sp.
653 _aenzyme kinetics
653 _aPenicillium nordicum
653 _aSatureja montana
653 _aroasted coffee
653 _afermentation
653 _acrisp biscuit
653 _adetoxification
653 _aessential oils
653 _agene expression
653 _aprobiotics
653 _azearalenone
653 _amycotoxins
653 _adegradation products
653 _aGeothrichum citri-aurantii
653 _agarlic-derived extracts
653 _aZearalenone
653 _abiodegradation
653 _aEU limits
653 _astorage
653 _aOriganum virens
653 _aaflatoxin
653 _afungal growth reduction
653 _agreen chemistry
653 _aPenicillium italicum
653 _adeoxynivalenol
653 _a?-Fe2O3
653 _aochratoxin A (OTA)
653 _awheat
653 _acell-free extracts of Aspergillus oryzae
653 _aphotocatalysis
653 _awheat quality
653 _apost-harvest phytopathogen
653 _acold plasma
653 _apinnatifidanoside D
653 _aochratoxin A
653 _aoats
653 _acell proliferation
653 _aestrogen receptor
653 _aPenicillium verrucosum
653 _apig production performance
653 _aphloridzin
653 _amaize
653 _abiotransformation
653 _afumonisin
653 _afungi
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/2303
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/54863
_70
_zDOAB: description of the publication
999 _c2996214
_d2996214