000 06144naaaa2201477uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/76898
005 20220714164334.0
020 _abooks978-3-0365-1995-1
020 _a9783036519944
020 _a9783036519951
024 7 _a10.3390/books978-3-0365-1995-1
_cdoi
041 0 _aEnglish
042 _adc
072 7 _aGP
_2bicssc
100 1 _aLee, Bae Hwan
_4edt
_91579728
700 1 _aLee, Bae Hwan
_4oth
_91579728
245 1 0 _aNeuroprotection: Rescue from Neuronal Death in the Brain
260 _aBasel, Switzerland
_bMDPI - Multidisciplinary Digital Publishing Institute
_c2021
300 _a1 electronic resource (408 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aDear Colleagues, The brain is vulnerable to injury. Following injury in the brain, apoptosis or necrosis may occur easily, leading to various functional disabilities. Neuronal death is associated with a number of neurological disorders including hypoxic ischemia, epileptic seizures, and neurodegenerative diseases. The brain subjected to injury is regarded to be responsible for the alterations in neurotransmission processes, resulting in functional changes. Oxidative stress produced by reactive oxygen species has been shown to be related to the death of neurons in traumatic injury, stroke, and neurodegenerative diseases. Therefore, scavenging or decreasing free radicals may be crucial for preventing neural tissues from harmful adversities in the brain. Neurotrophic factors, bioactive compounds, dietary nutrients, or cell engineering may ameliorate the pathological processes related to neuronal death or neurodegeneration and appear beneficial for improving neuroprotection. As a result of neuronal death or neuroprotection, the brain undergoes activity-dependent long-lasting changes in synaptic transmission, which is also known as functional plasticity. Neuroprotection implying the rescue from neuronal death is now becoming one of global health concerns. This Special Issue attempts to explore the recent advances in neuroprotection related to the brain. This Special Issue welcomes original research or review papers demonstrating the mechanisms of neuroprotection against brain injury using in vivo or in vitro models of animals as well as in clinical settings. The issues in a paper should be supported by sufficient data or evidence. Prof. Bae Hwan Lee Guest Editor
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by/4.0/
_2cc
_4https://creativecommons.org/licenses/by/4.0/
546 _aEnglish
650 7 _aResearch & information: general
_2bicssc
_9928234
653 _aglobal cerebral ischemia
653 _aamiloride
653 _asodium-hydrogen exchanger-1
653 _azinc
653 _aneuronal death
653 _aneuroprotection
653 _aneurodegenerative disorder
653 _acholine acetyltransferase (ChAT)
653 _atrimethyltin (TMT)
653 _abean phosphatidylserine (Bean-PS)
653 _abrain-derived neurotrophic factor
653 _amoderate hypoxia
653 _aphysical exercise
653 _apsychomotor function
653 _areaction time
653 _acortisol
653 _acatecholamines
653 _anitrite
653 _aendotheline-1
653 _alactate
653 _apyridoxine deficiency
653 _aischemia
653 _agerbil
653 _ahomocysteine
653 _acell death
653 _aglia
653 _aneurogenesis
653 _aN-acetyl-l-cysteine
653 _atransient receptor potential melastatin 2
653 _aneurodegeneration
653 _aAlzheimer's disease
653 _ametabolic disease
653 _aadiponectin
653 _ainsulin
653 _aantioxidants
653 _astroke
653 _apreventive gene therapy
653 _aadenoviral vector
653 _aVEGF
653 _aGDNF
653 _aNCAM
653 _ahuman umbilical cord blood mononuclear cells
653 _aantioxidant
653 _abrain
653 _aneurodegenerative disease
653 _aoxidative stress
653 _aPGC-1α
653 _avascular endothelial growth factor
653 _avascular endothelial growth factor receptor 2
653 _aPI3K/AKT
653 _aMEK/ERK
653 _astatus epilepticus
653 _ahippocampus
653 _amiddle cerebral artery occlusion
653 _areperfusion injury
653 _alipid emulsion
653 _aexcitotoxicity
653 _aapoptosis
653 _aGPR4 receptor
653 _aMPP+
653 _aParkinson's disease
653 _aCRISPR/cas9
653 _aischemic stroke
653 _ablood brain barrier
653 _ananoparticle-based drug delivery
653 _abrain targeting
653 _aBDNF
653 _amiRNAs
653 _asynaptic plasticity
653 _adepression
653 _aglioblastoma
653 _aastrocytes
653 _aastrocytic networks
653 _aconnexin 43
653 _acalcium activity
653 _aneural injury
653 _animodipine
653 _asubarachnoid haemorrhage
653 _aacid-sensing ion channels
653 _aoxygen-glucose deprivation
653 _aliver growth factor
653 _ainflammation
653 _amicroglia
653 _aTg2576 transgenic mice
653 _aamyloid-beta
653 _aoculomotor system
653 _atrophic factors
653 _amotoneurons
653 _aaxotomy
653 _aamyotrophic lateral sclerosis
653 _aelectroneutral transport
653 _acation-chloride cotransporters
653 _aKCCs
653 _aNKCCs
653 _aWNK-SPAK/OSR1
653 _aascorbic acid
653 _aaging
653 _aorganotypic hippocampal slice culture
653 _an/a
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/4368
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/76898
_70
_zDOAB: description of the publication
999 _c2984926
_d2984926