000 04834naaaa2201057uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/79636
005 20220714154649.0
020 _abooks978-3-0365-3123-6
020 _a9783036531229
020 _a9783036531236
024 7 _a10.3390/books978-3-0365-3123-6
_cdoi
041 0 _aEnglish
042 _adc
072 7 _aTB
_2bicssc
072 7 _aTBX
_2bicssc
100 1 _aDavino, Daniele
_4edt
_91565644
700 1 _aDavino, Daniele
_4oth
_91565644
245 1 0 _aSmart Materials and Devices for Energy Harvesting
260 _aBasel
_bMDPI - Multidisciplinary Digital Publishing Institute
_c2022
300 _a1 electronic resource (218 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aThis book is devoted to energy harvesting from smart materials and devices. It focusses on the latest available techniques recently published by researchers all over the world. Energy Harvesting allows otherwise wasted environmental energy to be converted into electric energy, such as vibrations, wind and solar energy. It is a common experience that the limiting factor for wearable electronics, such as smartphones or wearable bands, or for wireless sensors in harsh environments, is the finite energy stored in onboard batteries. Therefore, the answer to the battery "charge or change" issue is energy harvesting because it converts the energy in the precise location where it is needed. In order to achieve this, suitable smart materials are needed, such as piezoelectrics or magnetostrictives. Moreover, energy harvesting may also be exploited for other crucial applications, such as for the powering of implantable medical/sensing devices for humans and animals. Therefore, energy harvesting from smart materials will become increasingly important in the future. This book provides a broad perspective on this topic for researchers and readers with both physics and engineering backgrounds.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by/4.0/
_2cc
_4https://creativecommons.org/licenses/by/4.0/
546 _aEnglish
650 7 _aTechnology: general issues
_2bicssc
_9928609
650 7 _aHistory of engineering & technology
_2bicssc
_91129967
653 _amagnetostrictive
653 _aenergy harvesting
653 _awearable
653 _amagnetostrictive materials
653 _aGalfenol
653 _afinite element model
653 _airon-gallium
653 _ameasurements
653 _apreisach model
653 _apiezoelectric ceramics
653 _alead-free piezoceramics
653 _avirtual instrument
653 _a3D electrospinning
653 _aPVDF fibers
653 _apiezoelectricity
653 _apiezoelectric sensing
653 _awind energy harvesting
653 _asnap-through motion
653 _adynamic stability
653 _avariable-speed
653 _adouble-clamped
653 _awidth shapes
653 _apiezoelectric energy harvester
653 _aelectrodes pair
653 _aMEMS structure
653 _afinite element method
653 _aopen circuit voltage
653 _amoving load
653 _alayered double hydroxide solar cell (LDHSC)
653 _aphotoactive material
653 _aUV-Vis absorption
653 _adye sensitized solar cell (DSSC)
653 _aphotoactive layered double hydroxide (LDH)
653 _atransition metal modification
653 _aoptical bandgap analysis
653 _arenewable energy
653 _aphotovoltaic device design
653 _airon (Fe) modified MgFeAl LDH
653 _atriboelectric effect
653 _apolymer and composites
653 _alow-power devices
653 _athermomagnetic energy generators
653 _apower generation
653 _awaste heat recovery
653 _alumped-element modelling
653 _amagnetic shape memory films
653 _aNi-Mn-Ga film
653 _amagnetization change
653 _aCurie temperature
653 _afinite element simulation
653 _apiezoelectric unit distributions
653 _aelectrical potential and energy
653 _avon Mises stress
653 _aPVDF
653 _apiezoelectric material
653 _ahuman body movements
653 _aglass fiber-reinforced polymer composite
653 _amultifunctional structural laminate
653 _athermal energy harvesting
653 _athrough-thickness thermal gradient
653 _athermoelectric generator (TEG)
653 _an/a
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/5021
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/79636
_70
_zDOAB: description of the publication
999 _c2974735
_d2974735