000 12704cam a2200877Ia 4500
001 ocn823604565
003 OCoLC
005 20220711190107.0
006 m eo d
007 cr cn||||m|||a
008 130108s2013 nyua foab 001 0 eng d
040 _aCaBNvSL
_beng
_epn
_cJ2I
_dJ2I
_dN$T
_dUMI
_dCOO
_dE7B
_dUKMGB
_dDEBSZ
_dOCLCQ
_dOCLCF
_dOCLCQ
_dTXI
_dAGLDB
_dCPO
_dVGM
_dOCLCQ
_dUPM
_dVTS
_dTKN
_dSTF
_dM8D
_dUKAHL
_dOCLCO
016 7 _a016319126
_2Uk
019 _a825071235
_a1087445101
020 _a9781606500644
_q(electronic bk.)
020 _a1606500643
_q(electronic bk.)
020 _z9781606500620
_q(print)
020 _z1606500627
_q(print)
024 7 _a10.5643/9781606500644
_2doi
029 1 _aAU@
_b000050492445
029 1 _aDEBBG
_bBV041121046
029 1 _aDEBBG
_bBV043072794
029 1 _aDEBSZ
_b39675967X
029 1 _aDEBSZ
_b421287616
029 1 _aNZ1
_b16077721
035 _a(OCoLC)823604565
_z(OCoLC)825071235
_z(OCoLC)1087445101
037 _aCL0500000186
_bSafari Books Online
050 4 _aQD547
_b.K695 2013
072 7 _aSCI
_x013050
_2bisacsh
082 0 4 _a541.33
_223
049 _aMAIN
100 1 _aKozeschnik, E.
_q(Ernst)
_9916322
245 1 0 _aModeling solid-state precipitation /
_cErnst Kozeschnik.
260 _a[New York, N.Y.] (222 East 46th Street, New York, NY 10017) :
_bMomentum Press,
_c2013.
300 _a1 online resource (1 online resource (xxxiii, 464 pages)) :
_billustrations, digital file
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
500 _aTitle from PDF title page (viewed on January 8, 2013).
504 _aIncludes bibliographical references (pages 445-457) and index.
505 0 _aList of symbols -- List of figures -- List of tables -- Preface.
505 8 _a1. Thermodynamic basis of phase transformations -- 1.1 The Gibbs energy -- 1.2 Molar Gibbs energy and chemical potentials -- 1.3 Solution thermodynamics -- 1.3.1 Mechanical mixture and ideal solution -- 1.3.2 The regular solution -- 1.3.3 General solutions, the CALPHAD approach -- 1.4 Multiphase systems and driving force for precipitation -- 1.5 Curvature and elastic stress -- 1.5.1 The Gibbs-Thomson equation -- 1.5.2 Elastic misfit stress -- 1.6 Equilibrium structural vacancies.
505 8 _a2. Precipitate nucleation -- 2.1 Paving the way for nucleation theory -- 2.2 Nucleation of liquid droplets from supersaturated vapor -- 2.2.1 Thermodynamics of the critical nucleus -- 2.2.2 Overcoming the nucleation barrier -- 2.2.3 The kinetics of droplet formation -- 2.2.4 The Zeldovich factor -- 2.2.5 The time lag -- 2.2.6 Note on thermodynamic properties of small clusters -- 2.3 Solid-state nucleation -- 2.3.1 The precipitate-matrix interface -- 2.3.2 Free energy of nucleus formation -- 2.3.3 Steady-state nucleation rate in crystalline solids -- 2.3.4 Time-dependent nucleation -- 2.3.5 The volume misfit stress -- 2.3.6 Excess structural vacancies -- 2.4 Heterogeneous nucleation -- 2.4.1 Heterogeneous nucleation sites -- 2.4.2 Potential nucleation sites in a heterogeneous microstructure -- 2.4.3 Nucleation site saturation -- 2.4.4 Effective interfacial energies in heterogeneous nucleation -- 2.4.5 Grain boundary energy -- 2.5 Nucleation in multicomponent environment -- 2.5.1 CNT in multicomponent environment -- 2.5.2 The composition of the critical nucleus -- 2.6 Summary.
505 8 _a3. Diffusion-controlled precipitate growth and coarsening -- 3.1 Problem formulation -- 3.2 Diffusion-controlled growth with local thermodynamic equilibrium -- 3.2.1 Local equilibrium and composition profiles -- 3.2.2 Binary diffusion-controlled growth, the Zener model -- 3.2.3 The quasi-stationary solution for spherical precipitates -- 3.2.4 Analytical solution for high and low dimensionless supersaturation -- 3.2.5 Influence of capillarity on precipitate growth -- 3.3 Multicomponent diffusion-controlled growth -- 3.3.1 The multicomponent local equilibrium tie-lines -- 3.3.2 Fast and slow local equilibrium transformation regions -- 3.3.3 Local equilibrium controlled precipitation in multicomponent systems -- 3.3.4 Approximate treatment of multinary diffusional transformations -- 3.4 Energy dissipation at a moving phase boundary, the mixed-mode model -- 3.5 Mean-field evolution equations for precipitate growth -- 3.5.1 The thermodynamic extremal principle -- 3.5.2 Mean-field evolution equations for substitutional/interstital phases -- 3.5.3 Evolution equations for general sublattice phases -- 3.5.4 Comparison with local equilibrium based growth models -- 3.6 Precipitate coarsening -- 3.6.1 The lSW-theory of precipitate coarsening -- 3.6.2 Extensions of lSW theory for finite phase fraction effects -- 3.6.2.1 The modified lSW theory of Ardell -- 3.6.2.2 The Brailsford and Wynblatt theory -- 3.6.2.3 The Davies, Nash, and Stevens (LSEM) theory -- 3.6.2.4 The Tsumuraya and Miyata theory -- 3.6.2.5 The Marqusee and Ross theory -- 3.6.2.6 The Tokuyama and Kawasaki theory -- 3.6.2.7 The Voorhees and Glicksman theory -- 3.6.2.8 The Enomoto, Tokuyama, and Kawasaki theory -- 3.6.2.9 The Marder theory -- 3.6.3 Comparison of theories -- 3.6.4 Coarsening in multicomponent alloys -- 3.7 Summary.
505 8 _a4. Interfacial energy -- 4.1 The nearest-neighbor broken-bond model -- 4.2 Composition dependence of the precipitate-matrix interfacial energy -- 4.3 Generalization of the NNBB approach, the GBB model -- 4.3.1 Effective bond energies and broken bonds -- 4.3.2 Comparison between theory and experiment -- 4.4 Interface energy correction for small precipitates -- 4.4.1 The interface energy size correction function -- 4.4.2 Comparison with size correction in vapor-droplet systems -- 4.5 Energy of diffuse interfaces -- 4.5.1 Free energy of a diffuse interface -- 4.5.2 Regular solution approximation for diffuse interfaces -- 4.5.3 Comparison with other models -- 4.6 Summary.
505 8 _a5. Numerical modeling of precipitation -- 5.1 Kolmogorov-Johnson-Mehl-Avrami (KJMA) model -- 5.1.1 Derivation of the KJMA equation -- 5.1.2 Analysis of KJMA parameters -- 5.1.3 Multiphase KJMA kinetics -- 5.2 Langer-Schwartz model -- 5.2.1 The original LS model -- 5.2.2 Modified Langer-Schwartz model -- 5.3 Kampmann-Wagner numerical model -- 5.4 General course of a phase decomposition -- 5.4.1 Heat treatments for precipitation -- 5.4.2 Stages in precipitate life -- 5.4.3 Evolution of precipitation parameters -- 5.4.4 Overlap of nucleation, growth, and coarsening -- 5.5 Summary.
505 8 _a6. Heterogeneous precipitation -- 6.1 Precipitation at grain boundaries -- 6.1.1 Problem formulation -- 6.1.2 Diffusive processes -- 6.1.3 Evolution equations for precipitate growth -- 6.1.4 Evolution equations for precipitate coarsening -- 6.1.5 Growth kinetics of equisized precipitates -- 6.1.6 Growth kinetics of nonequisized precipitates -- 6.1.7 Coarsening kinetics -- 6.2 Anisotropy and precipitate shape -- 6.2.1 Shape parameter, h, and SFFK evolution equations -- 6.2.2 Determination of shape factors -- 6.2.3 Comparing growth kinetics -- 6.3 Particle coalescence -- 6.3.1 Diffusion kinetics of clusters -- 6.3.2 Evolution of precipitation systems by coalescence -- 6.3.3 Simultaneous adsorption/evaporation and coalescence -- 6.3.4 Phenomenological treatment of particle coalescence -- 6.3.5 Comparison with experiment -- 6.4 Simultaneous precipitation and diffusion -- 6.4.1 Numerical treatment in the local-equilibrium limit -- 6.4.2 Comparison of local-equilibrium simulations with experiment -- 6.4.3 Coupled diffusion and precipitation kinetics.
505 8 _a7. Diffusion -- 7.1 Mechanisms of diffusion -- 7.1.1 Diffusion in crystalline materials -- 7.1.2 The principle of microscopic time reversal -- 7.1.3 Random walk treatment of diffusion -- 7.1.4 The Einstein-Smoluchowski equation -- 7.2 Macroscopic models of diffusion -- 7.2.1 Phenomenological laws of diffusion -- 7.2.2 Special solutions of Fick's second law -- 7.2.2.1 Spreading of a diffusant from a point source -- 7.2.2.2 Diffusion into a semi-infinite sample -- 7.2.3 Numerical solution -- 7.2.4 Diffusion forces and atomic mobility -- 7.2.5 Multicomponent diffusion -- 7.3 Activation energy for diffusion -- 7.3.1 Temperature dependence of the diffusion coefficient -- 7.3.2 Diffusion along dislocations and grain boundaries -- 7.4 Excess structural vacancies -- 7.4.1 Vacancy generation and annihilation -- 7.4.2 Modeling excess vacancy evolution -- 7.4.2.1 Annihilation at dislocation jogs -- 7.4.2.2 Annihilation at Frank loops -- 7.4.2.3 Annihilation at grain boundaries -- 7.4.3 Vacancy evolution in polycrystalline microstructure -- 7.5 Summary.
505 8 _a8. Design of simulation -- 8.1 General considerations -- 8.2 How to design and interpret a solid-state precipitation simulation.
505 8 _a9. Software for precipitation kinetics simulation -- 9.1 DICTRA, diffusion-controlled transformation -- 9.1.1 General information -- 9.1.2 Basic concepts -- 9.1.2.1 Sharp interface -- 9.1.2.2 Local equilibrium -- 9.1.2.3 Diffusion -- 9.1.2.4 Microstructure -- 9.1.2.5 Nucleation and surface energy -- 9.1.3 DICTRA precipitation simulation -- 9.1.3.1 Interactive formulation of a problem in DICTRA -- 9.1.3.2 Results of the simulation -- 9.1.4 Further modules -- 9.1.4.1 Para-equilibrium model -- 9.1.4.2 Pearlite module -- 9.2 PrecipiCalc--software for 3D multiphase precipitation evolution -- 9.2.1 General information -- 9.2.2 Software implementation -- 9.2.3 Example of precipicalc simulations -- 9.2.4 Summary -- 9.3 MatCalc, the materials calculator -- 9.3.1 General information -- 9.3.2 The kinetic model -- 9.3.3 MatCalc precipitation simulation in the GUI version -- 9.3.4 MatCalc precipitation simulation using scripting -- 9.3.5 Using MatCalc with external software -- 9.3.6 Software-relevant literature and web sources -- 9.3.6.1 Modeling -- 9.3.6.2 Application -- 9.3.6.3 Examples -- 9.4 PanPrecipitation, an integrated computational tool for precipitation simulation of multicomponent alloys -- 9.4.1 Introduction -- 9.4.2 Kinetic models -- 9.4.3 Software design and data structure -- 9.4.4 Examples -- 9.4.4.1 Example 1: precipitation behavior of a model Ni- 14 at% Al alloy -- 9.4.4.2 Example 2: coarsening of Rene88DT -- 9.4.4.3 Example 3: precipitation hardening behavior of Al-Mg-Si alloys -- 9.4.5 Discussion -- 9.5 TC-Prisma -- 9.5.1 General information -- 9.5.2 Kinetic model -- 9.5.3 Performing TC-Prisma simulations "from scratch" -- 9.5.3.1 Define system -- 9.5.3.2 Define simulation conditions -- 9.5.3.3 Start -- 9.5.3.4 Plot results -- 9.5.4 Performing simulations using scripts -- 9.6 Comparison of software codes.
505 8 _aAppendix -- References -- Index.
520 3 _aOver recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation modeling and to recently-developed advanced, computationally-efficient techniques.
590 _aeBooks on EBSCOhost
_bEBSCO eBook Subscription Academic Collection - Worldwide
650 0 _aPrecipitation (Chemistry)
_xMathematical models.
_9916323
650 6 _aPrécipitation (Chimie)
_xModèles mathématiques.
_9916324
650 7 _aSCIENCE
_xChemistry
_xPhysical & Theoretical.
_2bisacsh
650 7 _aPrecipitation (Chemistry)
_xMathematical models.
_2fast
_0(OCoLC)fst01074921
_9916323
653 _aprecipitation modeling
653 _aprecipitation of second phases
653 _amulti-component systems
653 _acomplex thermo-mechanical treatments
653 _aphase transformation modeling
653 _anucleation theory
653 _aprecipitate growth
653 _acalculation of interfacial energies
653 _anumerical approaches using evolution equations
653 _aprecipitation kinetics simulations
655 0 _aElectronic books.
655 4 _aElectronic books.
776 0 8 _iPrint version:
_z1606500627
_z9781606500620
856 4 0 _uhttps://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=520291
938 _aAskews and Holts Library Services
_bASKH
_nAH34378807
938 _aebrary
_bEBRY
_nebr10642432
938 _aEBSCOhost
_bEBSC
_n520291
994 _a92
_bINOPJ
999 _c2744631
_d2744631