Amazon cover image
Image from Amazon.com

Dislocations, mesoscale simulations and plastic flow / by Ladislas Kubin.

By: Material type: TextTextSeries: Oxford series on materials modelling ; 5.Publication details: Oxford : Oxford University Press, 2013.Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780191664540
  • 0191664545
  • 9780191756238
  • 0191756237
Subject(s): Genre/Form: Additional physical formats: Print version:: Dislocations, mesoscale simulations and plastic flow.DDC classification:
  • 548.8420113 23
LOC classification:
  • QD921
Online resources:
Contents:
Machine generated contents note: 1. Background and Definitions -- 1.1. Introduction -- 1.2. Dislocation core properties -- 1.2.1. Core energy and structure -- 1.2.2. Cross-slip and the lattice resistance -- 1.3. Elastic properties of dislocations -- 1.3.1. Strain energy of a straight dislocation -- 1.3.2. Force on a dislocation -- 1.3.3. Line tension -- 1.3.4. Line tension strengthening -- 1.4. Dislocation velocity -- 1.4.1. Effective stress -- 1.4.2. Governing mechanisms -- 1.4.3. Orowan's law -- 1.5. Multiscale modelling -- 1.6. Introduction to 3D DD simulations -- 1.6.1. Brief historical sketch -- 1.6.2. Further implementation -- 2. Obstacle-controlled Plastic Flow -- 2.1. Outline -- 2.2. Free-flight velocity -- 2.2.1. The Peierls stress in fcc metals -- 2.2.2. Phonon drag -- 2.3. Dislocation -- dislocation interactions -- 2.3.1. Short-range interactions in fcc crystals -- 2.3.2. Junction formation and destruction -- 2.3.3. Jogs -- 2.4. Cross-slip in fee crystals -- 2.4.1. Models for compact cross-slip.
Note continued: 2.4.2. The Friedel-Escaig mechanism -- 2.4.3. The activation energy for cross-slip -- 2.4.4. Escaig's effect and Escaig's barrier -- 2.4.5. Experimental checks -- 2.4.6. Stress-free constriction energies -- 2.4.7. Atomistic studies of cross-slip -- 2.4.8. The multiple roles of cross-slip -- 2.5. Flow stress and dislocation densities -- 2.5.1. Dislocation strengthening -- 2.5.2. Forest strengthening -- 2.5.3. Jog strengthening -- 2.5.4. Generalized dislocation strengthening -- 2.6. Mechanical response and microstructures -- 2.6.1. Resolved stress-strain curves -- 2.6.2. Stage I -- 2.6.3. Stage II -- 2.6.4. Stage III -- 2.6.5. Stage IV -- 2.6.6. Similitude and self-similarity -- 2.6.7. The storage-recovery model -- 2.7. Collective dislocation behaviour -- 2.7.1. The modelling of dislocation patterns -- 2.7.2. Dislocation avalanches -- 3. Lattice-controlled Plastic Flow -- 3.1. Outline -- 3.2. The lattice resistance in bcc metals -- 3.2.1. Deformation properties of bcc metals.
Note continued: 3.2.2. Core structure of screw dislocations -- 3.2.3. Non-Schmid effects and Peierls stresses -- 3.2.4. Kink-pair mechanisms and models -- 3.2.5. Strengthening and softening in bcc metals -- 3.3. Prismatic slip in hcp metals -- 3.3.1. Slip systems and screw dislocation cores -- 3.3.2. The Peierls stress in Ti and Zr -- 3.3.3. Locking-unlocking in hcp metals -- 3.4. Dislocations in silicon -- 3.4.1. Introduction -- 3.4.2. Dislocations in the diamond cubic lattice -- 3.4.3. Dislocation cores in the glide set -- 3.4.4. Experimental methods -- 3.4.5. The multiplication yield point of silicon -- 3.4.6. Velocities in the kink-diffusion model -- 3.4.7. Dislocation velocities and activation energies -- 3.4.8. The length-independent regime -- 3.4.9. Dislocations at high stress -- 4.A Guide to 3D DD Simulations -- 4.1. Introduction -- 4.2. Elastic properties -- 4.2.1. Outline -- 4.2.2. Discretization of dislocation lines -- 4.2.3. Local procedures and optimization -- 4.2.4. Core fields.
Note continued: 4.2.5. The self-stress -- 4.2.6. From self-stress to effective stress -- 4.2.7. Further optimization -- 4.2.8. Elastic anisotropy -- 4.2.9. Dissociated dislocations -- 4.3. Local rules -- 4.3.1. Outline -- 4.3.2. Dislocation mobility and velocity -- 4.3.3. Dislocation cross-slip -- 4.3.4. Other local rules -- 4.4. Boundary conditions -- 4.4.1. Periodic boundary conditions -- 4.4.2. Finite boundary conditions -- 4.4.3. Other methods for finite sizes -- 4.5. Current 3D DD simulations -- 5. Applications of DD Simulations -- 5.1. Outline -- 5.2. Dislocation intersections -- 5.2.1. Intersections and reactions -- 5.2.2. The interaction coefficients -- 5.3. Atomic-scale defects, precipitation strengthening -- 5.3.1. Dislocations and solute atoms -- 5.3.2. Dislocations and irradiation defects -- 5.3.3. Dislocation climb -- 5.3.4. Precipitation strengthening -- 5.4. Collective dislocation processes -- 5.4.1. Intermittency and avalanches -- 5.4.2. From intermittent to continuous flow.
Note continued: 5.4.3. Dislocation patterns -- 5.4.4. Patterning in cyclic deformation -- 5.4.5. Shock loading, high strain rates -- 5.5. Size effects in plasticity -- 5.5.1. Introduction -- 5.5.2.A few examples -- 5.5.3. The silicon world -- 5.5.4. Thin metallic films -- 5.5.5. Small-scale pillars -- 5.6. Concluding remarks -- Appendices -- A. Thermal Activation of Dislocation Motion -- A.1. Mesoscale framework -- A.2. Orders of magnitude -- B. Selection of Materials Constants -- B.1. Stacking fault energies, dissociation widths -- B.2. Elastic constants, shear moduli -- C. Slip in Single Crystals -- C.1. The Peach-Koehler force -- C.2. Schmid's law, lattice rotation -- C.3. Active slip systems in fcc crystals -- D. From [gamma]-surface to Peierls Stress -- E. Kink-pair Models -- E.1. Dislocations and Peierls potentials -- E.2. High-stress solutions -- E.3. Kink-pairs at low stresses -- E.4. The kink-diffusion model.
Summary: Dislocation dynamics simulations are becoming accessible to a wide range of users. This book presents to students and researchers in materials science and mechanical engineering a comprehensive coverage of the physical body of knowledge on which they are based.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books EBSCO Available

Includes bibliographical references and index.

Print version record.

Dislocation dynamics simulations are becoming accessible to a wide range of users. This book presents to students and researchers in materials science and mechanical engineering a comprehensive coverage of the physical body of knowledge on which they are based.

English.

Machine generated contents note: 1. Background and Definitions -- 1.1. Introduction -- 1.2. Dislocation core properties -- 1.2.1. Core energy and structure -- 1.2.2. Cross-slip and the lattice resistance -- 1.3. Elastic properties of dislocations -- 1.3.1. Strain energy of a straight dislocation -- 1.3.2. Force on a dislocation -- 1.3.3. Line tension -- 1.3.4. Line tension strengthening -- 1.4. Dislocation velocity -- 1.4.1. Effective stress -- 1.4.2. Governing mechanisms -- 1.4.3. Orowan's law -- 1.5. Multiscale modelling -- 1.6. Introduction to 3D DD simulations -- 1.6.1. Brief historical sketch -- 1.6.2. Further implementation -- 2. Obstacle-controlled Plastic Flow -- 2.1. Outline -- 2.2. Free-flight velocity -- 2.2.1. The Peierls stress in fcc metals -- 2.2.2. Phonon drag -- 2.3. Dislocation -- dislocation interactions -- 2.3.1. Short-range interactions in fcc crystals -- 2.3.2. Junction formation and destruction -- 2.3.3. Jogs -- 2.4. Cross-slip in fee crystals -- 2.4.1. Models for compact cross-slip.

Note continued: 2.4.2. The Friedel-Escaig mechanism -- 2.4.3. The activation energy for cross-slip -- 2.4.4. Escaig's effect and Escaig's barrier -- 2.4.5. Experimental checks -- 2.4.6. Stress-free constriction energies -- 2.4.7. Atomistic studies of cross-slip -- 2.4.8. The multiple roles of cross-slip -- 2.5. Flow stress and dislocation densities -- 2.5.1. Dislocation strengthening -- 2.5.2. Forest strengthening -- 2.5.3. Jog strengthening -- 2.5.4. Generalized dislocation strengthening -- 2.6. Mechanical response and microstructures -- 2.6.1. Resolved stress-strain curves -- 2.6.2. Stage I -- 2.6.3. Stage II -- 2.6.4. Stage III -- 2.6.5. Stage IV -- 2.6.6. Similitude and self-similarity -- 2.6.7. The storage-recovery model -- 2.7. Collective dislocation behaviour -- 2.7.1. The modelling of dislocation patterns -- 2.7.2. Dislocation avalanches -- 3. Lattice-controlled Plastic Flow -- 3.1. Outline -- 3.2. The lattice resistance in bcc metals -- 3.2.1. Deformation properties of bcc metals.

Note continued: 3.2.2. Core structure of screw dislocations -- 3.2.3. Non-Schmid effects and Peierls stresses -- 3.2.4. Kink-pair mechanisms and models -- 3.2.5. Strengthening and softening in bcc metals -- 3.3. Prismatic slip in hcp metals -- 3.3.1. Slip systems and screw dislocation cores -- 3.3.2. The Peierls stress in Ti and Zr -- 3.3.3. Locking-unlocking in hcp metals -- 3.4. Dislocations in silicon -- 3.4.1. Introduction -- 3.4.2. Dislocations in the diamond cubic lattice -- 3.4.3. Dislocation cores in the glide set -- 3.4.4. Experimental methods -- 3.4.5. The multiplication yield point of silicon -- 3.4.6. Velocities in the kink-diffusion model -- 3.4.7. Dislocation velocities and activation energies -- 3.4.8. The length-independent regime -- 3.4.9. Dislocations at high stress -- 4.A Guide to 3D DD Simulations -- 4.1. Introduction -- 4.2. Elastic properties -- 4.2.1. Outline -- 4.2.2. Discretization of dislocation lines -- 4.2.3. Local procedures and optimization -- 4.2.4. Core fields.

Note continued: 4.2.5. The self-stress -- 4.2.6. From self-stress to effective stress -- 4.2.7. Further optimization -- 4.2.8. Elastic anisotropy -- 4.2.9. Dissociated dislocations -- 4.3. Local rules -- 4.3.1. Outline -- 4.3.2. Dislocation mobility and velocity -- 4.3.3. Dislocation cross-slip -- 4.3.4. Other local rules -- 4.4. Boundary conditions -- 4.4.1. Periodic boundary conditions -- 4.4.2. Finite boundary conditions -- 4.4.3. Other methods for finite sizes -- 4.5. Current 3D DD simulations -- 5. Applications of DD Simulations -- 5.1. Outline -- 5.2. Dislocation intersections -- 5.2.1. Intersections and reactions -- 5.2.2. The interaction coefficients -- 5.3. Atomic-scale defects, precipitation strengthening -- 5.3.1. Dislocations and solute atoms -- 5.3.2. Dislocations and irradiation defects -- 5.3.3. Dislocation climb -- 5.3.4. Precipitation strengthening -- 5.4. Collective dislocation processes -- 5.4.1. Intermittency and avalanches -- 5.4.2. From intermittent to continuous flow.

Note continued: 5.4.3. Dislocation patterns -- 5.4.4. Patterning in cyclic deformation -- 5.4.5. Shock loading, high strain rates -- 5.5. Size effects in plasticity -- 5.5.1. Introduction -- 5.5.2.A few examples -- 5.5.3. The silicon world -- 5.5.4. Thin metallic films -- 5.5.5. Small-scale pillars -- 5.6. Concluding remarks -- Appendices -- A. Thermal Activation of Dislocation Motion -- A.1. Mesoscale framework -- A.2. Orders of magnitude -- B. Selection of Materials Constants -- B.1. Stacking fault energies, dissociation widths -- B.2. Elastic constants, shear moduli -- C. Slip in Single Crystals -- C.1. The Peach-Koehler force -- C.2. Schmid's law, lattice rotation -- C.3. Active slip systems in fcc crystals -- D. From [gamma]-surface to Peierls Stress -- E. Kink-pair Models -- E.1. Dislocations and Peierls potentials -- E.2. High-stress solutions -- E.3. Kink-pairs at low stresses -- E.4. The kink-diffusion model.

eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library