Amazon cover image
Image from Amazon.com

Hydroxyapatite : synthesis, properties, and applications / editors, Valeri S. Gshalaev and Aleksandra C. Demirchan.

Contributor(s): Material type: TextTextSeries: Biomaterials--properties, production, and devices seriesPublication details: Hauppauge, N.Y. : Nova Science Publishers, ©2012.Description: 1 online resource (xiii, 477 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781620819487
  • 1620819481
Subject(s): Genre/Form: Additional physical formats: Print version:: Hydroxyapatite.DDC classification:
  • 549/.72 23
LOC classification:
  • QE391.A6 H93 2012eb
Online resources:
Contents:
HYDROXYAPATITE: SYNTHESIS, PROPERTIES AND APPLICATIONS; HYDROXYAPATITE: SYNTHESIS, PROPERTIES AND APPLICATIONS; Library of Congress Cataloging-in-Publication Data; Contents; Preface; Chapter I: Nanodimensional and NanocrystallineHydroxyapatite and Other CalciumOrthophosphates; Abstract; 1. Introduction; 2. General Information on "Nano"; 3. Micron- and Submicron-Sized CalciumOrthophosphates Versus the NanodimensionalOnes; 4. Nanodimensional and Nanocrystalline CalciumOrthophosphates in Calcified Tissues of Mammals; 4.1. Bones; 4.2. Teeth.
5. The Structure of the Nanodimensionaland Nanocrystalline Apatites6. Synthesis of the Nanodimensionaland Nanocrystalline Calcium Orthophosphates; 6.1. General Nanotechnological Approaches; 6.2. Nanodimensional and Nanocrystalline Apatites; 6.3. Nanodimensional and Nanocrystalline TCP; 6.4. Other Nanodimensional and Nanocrystalline Calcium Orthophosphates; 6.5. Biomimetic Construction Using Nanodimensional Particles; 7. Biomedical Applications of the Nanodimensional and NanocrystallineCalcium Orthophosphates; 7.1. Bone Repair.
7.2. Nanodimensional and Nanocrystalline Calcium Orthophosphates and Bone-Related Cells7.3. Dental Applications; 7.4. Other Applications; 8. Non-Biomedical Applications of the Nanodimensional and NanocrystallineCalcium Orthophosphates; 9. Summary and Perspectives; Conclusion; Post-Conclusion Remarks; References; Chapter II: Synthesis, Properties, and Applications of Hydroxyapatite; Abstract; 1. Introduction; 2. Synthesis Methods for HA powders; 2.2. Wet Chemical Methods; 3. HA Processing Parametersand Material Properties; 3.1. Sintering; 3.2. Thermal Stability of HA; 3.3. Mechanical Properties.
3.4. Biological Properties of HA4. HA Coatings; 4.1. Plasma Spraying; 4.2. Biomimetic Coatings; 5. Tissue Engineering; 5.1. Porosity; 5.2. Composite Scaffolds; 6. Nanophase HA -- The Next GenerationBioceramics for Bone Engineeirng; 7. Clinical Craniofacial Applications; Conclusion; References; Chapter III: The Dissolution Mechanism of Calcium Apatites in Acids; Abstract; 1. Introduction; 2. Critical Analysis of the Dissolution Modelsof Calcium Apatites; 2.1. Diffusion (or Transport) and Kinetically (or Surface) Controlled Models; 2.2. Mono and Polynuclear Models.
2.3. Self-Inhibition (Calcium-Rich Layer Formation) Model2.4. Stoichiometric/Non-Stoichiometric (Congruent/Incongruent)Dissolution; 2.5. Chemical Model; 2.6. Etch Pit Formation; 2.7. Ion Exchange Model; 2.8. Hydrogen Catalytic Model; 3. Summary on the Dissolution Models; 4. A Reasonable Classification of the DissolutionModels; 5. Brief Information on Apatite Structure; 6. Necessary Assumptions and Limitations; 7. Creation of the General Dissolution Mechanism; 7.1. Atomic (Ionic) Description for the Perfect Crystals; 7.2. The Influence of Dislocations and Surface Defects; Conclusion.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books EBSCO Available

Includes bibliographical references and index.

Print version record.

HYDROXYAPATITE: SYNTHESIS, PROPERTIES AND APPLICATIONS; HYDROXYAPATITE: SYNTHESIS, PROPERTIES AND APPLICATIONS; Library of Congress Cataloging-in-Publication Data; Contents; Preface; Chapter I: Nanodimensional and NanocrystallineHydroxyapatite and Other CalciumOrthophosphates; Abstract; 1. Introduction; 2. General Information on "Nano"; 3. Micron- and Submicron-Sized CalciumOrthophosphates Versus the NanodimensionalOnes; 4. Nanodimensional and Nanocrystalline CalciumOrthophosphates in Calcified Tissues of Mammals; 4.1. Bones; 4.2. Teeth.

5. The Structure of the Nanodimensionaland Nanocrystalline Apatites6. Synthesis of the Nanodimensionaland Nanocrystalline Calcium Orthophosphates; 6.1. General Nanotechnological Approaches; 6.2. Nanodimensional and Nanocrystalline Apatites; 6.3. Nanodimensional and Nanocrystalline TCP; 6.4. Other Nanodimensional and Nanocrystalline Calcium Orthophosphates; 6.5. Biomimetic Construction Using Nanodimensional Particles; 7. Biomedical Applications of the Nanodimensional and NanocrystallineCalcium Orthophosphates; 7.1. Bone Repair.

7.2. Nanodimensional and Nanocrystalline Calcium Orthophosphates and Bone-Related Cells7.3. Dental Applications; 7.4. Other Applications; 8. Non-Biomedical Applications of the Nanodimensional and NanocrystallineCalcium Orthophosphates; 9. Summary and Perspectives; Conclusion; Post-Conclusion Remarks; References; Chapter II: Synthesis, Properties, and Applications of Hydroxyapatite; Abstract; 1. Introduction; 2. Synthesis Methods for HA powders; 2.2. Wet Chemical Methods; 3. HA Processing Parametersand Material Properties; 3.1. Sintering; 3.2. Thermal Stability of HA; 3.3. Mechanical Properties.

3.4. Biological Properties of HA4. HA Coatings; 4.1. Plasma Spraying; 4.2. Biomimetic Coatings; 5. Tissue Engineering; 5.1. Porosity; 5.2. Composite Scaffolds; 6. Nanophase HA -- The Next GenerationBioceramics for Bone Engineeirng; 7. Clinical Craniofacial Applications; Conclusion; References; Chapter III: The Dissolution Mechanism of Calcium Apatites in Acids; Abstract; 1. Introduction; 2. Critical Analysis of the Dissolution Modelsof Calcium Apatites; 2.1. Diffusion (or Transport) and Kinetically (or Surface) Controlled Models; 2.2. Mono and Polynuclear Models.

2.3. Self-Inhibition (Calcium-Rich Layer Formation) Model2.4. Stoichiometric/Non-Stoichiometric (Congruent/Incongruent)Dissolution; 2.5. Chemical Model; 2.6. Etch Pit Formation; 2.7. Ion Exchange Model; 2.8. Hydrogen Catalytic Model; 3. Summary on the Dissolution Models; 4. A Reasonable Classification of the DissolutionModels; 5. Brief Information on Apatite Structure; 6. Necessary Assumptions and Limitations; 7. Creation of the General Dissolution Mechanism; 7.1. Atomic (Ionic) Description for the Perfect Crystals; 7.2. The Influence of Dislocations and Surface Defects; Conclusion.

eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library