Amazon cover image
Image from Amazon.com

Resource allocation problems in supply chains / by K. Ganesh, R.A. Malairajan, Sanja Mohapatra, M. Punniymoorthy.

By: Contributor(s): Material type: TextTextPublisher: Bingley, UK : Emerald Group Publishing Limited, 2015Edition: First editionDescription: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781785603983
  • 1785603981
  • 178560399X
  • 9781785603990
Subject(s): Genre/Form: Additional physical formats: Erscheint auch als:: Ganesh, K. Resource Allocation Problems in Supply ChainsDDC classification:
  • 658.7 23
LOC classification:
  • HD38.5 .G36 2015eb
Online resources:
Contents:
Front Cover; Resource Allocation Problems in Supply Chains; Copyright page; Abstract; Contents; List of Tables; List of Figures; List of Symbols and Abbreviations; About the Authors; Section 1 Introduction; 1.1. Supply Chain Management; 1.2. Resource Allocation Problems in Supply Chain; 1.3. Motivation of Resource Allocation Problems; 1.3.1. Resource Allocation Variant in Bi-Objective Capacitated Supply Chain Network; 1.3.2. Resource Allocation Variant in Bi-Objective Bound Driven Capacitated Supply Chain Network
1.3.3. Resource Allocation Variant in Multiple Measures Driven Capacitated Multi-Echelon Supply Chain Network1.3.4. Resource Allocation Variant in Integrated Decision and Upper Bound Driven Capacitated Multi-Echelon Supply Chain Network; 1.3.5. Resource Allocation Variant in Integrated Decision and Time Driven Capacitated Multi-Echelon Supply Chain Network; 1.3.6. Resource Allocation Variant in Integrated Decision, Bound and Time Driven Capacitated Multi-Echelon Supply Chain Network; 1.4. Scope of the Present Study; Section 2 Literature Review; 2.1. Resource Allocation Problem
2.2. Review of the RA Variants Addressed in Current Research2.2.1. Bi-Objective Generalized Assignment Problem; 2.2.2. Multi-Commodity Network Flow Problem; 2.2.3. Multiple Measures Resource Allocation Problem; 2.2.4. Mixed Capacitated Arc Routing Problem; 2.2.5. Employee Routing Problem; 2.2.6. Vehicle Routing Problem with Backhauls with Time Windows; 2.3. Observations and Research Gap; 2.4. Summary; Section 3 Bi-Objective Capacitated Supply Chain Network; 3.1. Bi-Objective Resource Allocation Problem with Varying Capacity; 3.2. Solution Methodology to Solve BORAPVC
3.2.1. Mathematical Programming Model for BORAPVC3.2.2. Simulated Annealing with Population Size Initialization through Neighborhood Generation for GAP and BORAPVC; 3.2.2.1. Parameter settings for SAPING; 3.3. Computational Experiments and Results; 3.4. Conclusion; Section 4 Bi-Objective Bound Driven Capacitated Supply Chain Network; 4.1. Bi-Objective Resource Allocation Problem with Bound and Varying Capacity; 4.2. Solution Methodology to Solve IRARPUB; 4.2.1. Recursive Function Inherent Genetic Algorithm (REFING) for MCNF and BORAPBVC; 4.3. Computational Experiments and Results
4.3.1. Performance of Solution Methodology4.4. Case Study Demonstration; 4.4.1. Problem Identification and Discussion; 4.4.1.1. Patient Distribution System (PDS); 4.4.1.2. Input to the Central Body; 4.4.1.3. Flow chart for the allocation of patients; 4.4.1.4. Problem identification; 4.4.1.5. Assumptions; 4.4.2. Formulation of the Problem; 4.4.3. Model Testing; 4.4.4. Analysis of Results and Discussion; 4.4.5. Managerial Implications; 4.4.6. Summary for Case Study; 4.5. Conclusion; Section 5 Multiple Measures Driven Capacitated Multi-Echelon Supply Chain Network
Summary: "Resource Allocation (RA) involves the distribution and utilization of available resources in the system. Because resource availability is usually scarce and expensive, it becomes important to find optimal solutions to such problems. Thus RA problems represent an important class of problems faced by mathematical programmers. This book focuses on development of models and heuristics for six new and complex sub-classes of RA problems in Supply Chain (SC) networks, focusing on bi-objectives, dynamic input data, and multiple performance measures based allocation and integrated allocation, and routing with complex constraints. It considers six set of variants of the RA problems normally encountered in practice but have not yet been studied. These variants of the classical RA are complex and pertaining to both manufacturing and service industry."--Publisher.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books EBSCO Available

Vendor-supplied metadata.

Includes bibliographical references.

"Resource Allocation (RA) involves the distribution and utilization of available resources in the system. Because resource availability is usually scarce and expensive, it becomes important to find optimal solutions to such problems. Thus RA problems represent an important class of problems faced by mathematical programmers. This book focuses on development of models and heuristics for six new and complex sub-classes of RA problems in Supply Chain (SC) networks, focusing on bi-objectives, dynamic input data, and multiple performance measures based allocation and integrated allocation, and routing with complex constraints. It considers six set of variants of the RA problems normally encountered in practice but have not yet been studied. These variants of the classical RA are complex and pertaining to both manufacturing and service industry."--Publisher.

Front Cover; Resource Allocation Problems in Supply Chains; Copyright page; Abstract; Contents; List of Tables; List of Figures; List of Symbols and Abbreviations; About the Authors; Section 1 Introduction; 1.1. Supply Chain Management; 1.2. Resource Allocation Problems in Supply Chain; 1.3. Motivation of Resource Allocation Problems; 1.3.1. Resource Allocation Variant in Bi-Objective Capacitated Supply Chain Network; 1.3.2. Resource Allocation Variant in Bi-Objective Bound Driven Capacitated Supply Chain Network

1.3.3. Resource Allocation Variant in Multiple Measures Driven Capacitated Multi-Echelon Supply Chain Network1.3.4. Resource Allocation Variant in Integrated Decision and Upper Bound Driven Capacitated Multi-Echelon Supply Chain Network; 1.3.5. Resource Allocation Variant in Integrated Decision and Time Driven Capacitated Multi-Echelon Supply Chain Network; 1.3.6. Resource Allocation Variant in Integrated Decision, Bound and Time Driven Capacitated Multi-Echelon Supply Chain Network; 1.4. Scope of the Present Study; Section 2 Literature Review; 2.1. Resource Allocation Problem

2.2. Review of the RA Variants Addressed in Current Research2.2.1. Bi-Objective Generalized Assignment Problem; 2.2.2. Multi-Commodity Network Flow Problem; 2.2.3. Multiple Measures Resource Allocation Problem; 2.2.4. Mixed Capacitated Arc Routing Problem; 2.2.5. Employee Routing Problem; 2.2.6. Vehicle Routing Problem with Backhauls with Time Windows; 2.3. Observations and Research Gap; 2.4. Summary; Section 3 Bi-Objective Capacitated Supply Chain Network; 3.1. Bi-Objective Resource Allocation Problem with Varying Capacity; 3.2. Solution Methodology to Solve BORAPVC

3.2.1. Mathematical Programming Model for BORAPVC3.2.2. Simulated Annealing with Population Size Initialization through Neighborhood Generation for GAP and BORAPVC; 3.2.2.1. Parameter settings for SAPING; 3.3. Computational Experiments and Results; 3.4. Conclusion; Section 4 Bi-Objective Bound Driven Capacitated Supply Chain Network; 4.1. Bi-Objective Resource Allocation Problem with Bound and Varying Capacity; 4.2. Solution Methodology to Solve IRARPUB; 4.2.1. Recursive Function Inherent Genetic Algorithm (REFING) for MCNF and BORAPBVC; 4.3. Computational Experiments and Results

4.3.1. Performance of Solution Methodology4.4. Case Study Demonstration; 4.4.1. Problem Identification and Discussion; 4.4.1.1. Patient Distribution System (PDS); 4.4.1.2. Input to the Central Body; 4.4.1.3. Flow chart for the allocation of patients; 4.4.1.4. Problem identification; 4.4.1.5. Assumptions; 4.4.2. Formulation of the Problem; 4.4.3. Model Testing; 4.4.4. Analysis of Results and Discussion; 4.4.5. Managerial Implications; 4.4.6. Summary for Case Study; 4.5. Conclusion; Section 5 Multiple Measures Driven Capacitated Multi-Echelon Supply Chain Network

eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library