Amazon cover image
Image from Amazon.com

Extended-nanofluidic systems for chemistry and biotechnology / Kazuma Mawatari [and others].

Contributor(s): Material type: TextTextPublication details: London : Imperial College Press, ©2012.Description: 1 online resource (187 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781848168022
  • 1848168020
  • 9781848168015
  • 1848168012
Subject(s): Genre/Form: Additional physical formats: Print version:: Extended-Nanofluidic Systems For Chemistry and Biotechnology.DDC classification:
  • 620.106
LOC classification:
  • TJ853.4.M53 E98 2012eb
Online resources:
Contents:
Chapter 1. Introduction; References; Chapter 2. Microchemical Systems; References; Chapter 3. Fundamental Technology: Nanofabrication Methods; 3.1. Top-Down Fabrication; 3.1.1. Introduction; 3.1.2. Bulk nanomachining techniques; 3.1.2.1. Combination of lithography and wet etching; 3.1.2.2. Combination of lithography and dry etching; 3.1.2.3. Other lithographic techniques; 3.1.2.4. Direct nanofabrication; 3.1.3. Surface machining techniques; 3.1.3.1. Utilization of polysilicon as a sacrificial material; 3.1.3.2. Utilization of metals and polymers as sacrificial materials.
3.1.4. Imprinting and embossing nanofabrication techniques3.1.5. New strategies of nanofabrication; 3.1.5.1. Non-lithographic techniques; 3.1.5.2. Hybrid-material techniques; 3.1.6. Combination of lift-off and lithography; 3.2. Local Surface Modification; 3.2.1. Modification using VUV; 3.2.2. Modification using an electron beam; 3.2.3. Modification using photochemical reaction; 3.3. Bonding; 3.3.1. Introduction; 3.3.2. Wafer bond characterization methods; 3.3.3. Wafer direct bonding; 3.3.4. Wafer direct bonding mechanism; 3.3.5. Surface requirements for wafer direct bonding.
3.3.6. Low temperature direct bonding by surface plasma activation3.3.7. Anodic bonding; References; Chapter 4. Fundamental Technology: Fluidic Control Methods; 4.1. Basic Theory; 4.2. Pressure-Driven Flow; 4.3. Shear-Driven Flow; 4.4. Electrokinetically-Driven Flow; 4.5. Conclusion and Outlook; References; Chapter 5. Fundamental Technology: Detection Methods; 5.1. Single Molecule Detection Methods; 5.1.1. Optical detection methods; 5.1.2. Electrochemical methods; 5.2. Measurement of Fluidic Properties; 5.2.1. Nonintrusive flow measurement techniques.
5.2.1.1. Streaming potential/current measurement in pressure-driven flows5.2.1.2. Current monitoring in electroosmotic flow; 5.2.2. Optical flow imaging techniques using a tracer; 5.2.2.1. Properties of flow tracers; 5.2.2.2. Scalar image velocimetry; 5.2.2.3. Nanoparticle image velocimetry; 5.2.2.4. Laser-induced fluorescence photobleaching anemometer with stimulated emission depletion; References; Chapter 6. Basic Nanoscience; 6.1. Liquid Properties; 6.1.1. Introduction; 6.1.2. Viscosities of liquids confined in extended nanospaces; 6.1.3. Electrical conductivity in extended nanospaces.
6.1.4. Streaming current/potential in extended nanospaces6.1.5. Ion transport in extended nanospaces; 6.1.6. Gas/liquid phase transition phenomena in extended nanospaces; 6.1.7. Structures and dynamics of liquids confined in extended nanospaces; 6.2. Chemical Reaction; 6.2.1. Enzymatic reaction; 6.2.2. Keto-enol tautomeric equilibrium; 6.2.3. Nanoparticle synthesis; 6.2.4. Nano DNA hybridization; 6.2.5. Nano redox reaction; 6.3. Liquid Properties in Intercellular Space; References; Chapter 7. Application to Chemistry and Biotechnology; 7.1. Separation; 7.1.1. Separation by electrophoresis.
Summary: For the past decade, new research fields utilizing microfluidics have been formed. General micro-integration methods were proposed, and the supporting fundamental technologies were widely developed. These methodologies have made various applications in the fields of analytical and chemical synthesis, and their superior performances such as rapid, simple, and high efficient processing have been proved. Recently, the space is further downscaling to 101-103nm scale (we call the space extended-nano space). The extended-nano space located between the conventional nanotechnology (100-101nm) and micr.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books EBSCO Available

Print version record.

Chapter 1. Introduction; References; Chapter 2. Microchemical Systems; References; Chapter 3. Fundamental Technology: Nanofabrication Methods; 3.1. Top-Down Fabrication; 3.1.1. Introduction; 3.1.2. Bulk nanomachining techniques; 3.1.2.1. Combination of lithography and wet etching; 3.1.2.2. Combination of lithography and dry etching; 3.1.2.3. Other lithographic techniques; 3.1.2.4. Direct nanofabrication; 3.1.3. Surface machining techniques; 3.1.3.1. Utilization of polysilicon as a sacrificial material; 3.1.3.2. Utilization of metals and polymers as sacrificial materials.

3.1.4. Imprinting and embossing nanofabrication techniques3.1.5. New strategies of nanofabrication; 3.1.5.1. Non-lithographic techniques; 3.1.5.2. Hybrid-material techniques; 3.1.6. Combination of lift-off and lithography; 3.2. Local Surface Modification; 3.2.1. Modification using VUV; 3.2.2. Modification using an electron beam; 3.2.3. Modification using photochemical reaction; 3.3. Bonding; 3.3.1. Introduction; 3.3.2. Wafer bond characterization methods; 3.3.3. Wafer direct bonding; 3.3.4. Wafer direct bonding mechanism; 3.3.5. Surface requirements for wafer direct bonding.

3.3.6. Low temperature direct bonding by surface plasma activation3.3.7. Anodic bonding; References; Chapter 4. Fundamental Technology: Fluidic Control Methods; 4.1. Basic Theory; 4.2. Pressure-Driven Flow; 4.3. Shear-Driven Flow; 4.4. Electrokinetically-Driven Flow; 4.5. Conclusion and Outlook; References; Chapter 5. Fundamental Technology: Detection Methods; 5.1. Single Molecule Detection Methods; 5.1.1. Optical detection methods; 5.1.2. Electrochemical methods; 5.2. Measurement of Fluidic Properties; 5.2.1. Nonintrusive flow measurement techniques.

5.2.1.1. Streaming potential/current measurement in pressure-driven flows5.2.1.2. Current monitoring in electroosmotic flow; 5.2.2. Optical flow imaging techniques using a tracer; 5.2.2.1. Properties of flow tracers; 5.2.2.2. Scalar image velocimetry; 5.2.2.3. Nanoparticle image velocimetry; 5.2.2.4. Laser-induced fluorescence photobleaching anemometer with stimulated emission depletion; References; Chapter 6. Basic Nanoscience; 6.1. Liquid Properties; 6.1.1. Introduction; 6.1.2. Viscosities of liquids confined in extended nanospaces; 6.1.3. Electrical conductivity in extended nanospaces.

6.1.4. Streaming current/potential in extended nanospaces6.1.5. Ion transport in extended nanospaces; 6.1.6. Gas/liquid phase transition phenomena in extended nanospaces; 6.1.7. Structures and dynamics of liquids confined in extended nanospaces; 6.2. Chemical Reaction; 6.2.1. Enzymatic reaction; 6.2.2. Keto-enol tautomeric equilibrium; 6.2.3. Nanoparticle synthesis; 6.2.4. Nano DNA hybridization; 6.2.5. Nano redox reaction; 6.3. Liquid Properties in Intercellular Space; References; Chapter 7. Application to Chemistry and Biotechnology; 7.1. Separation; 7.1.1. Separation by electrophoresis.

7.1.2. Separation by pressure-driven flow or shear-driven flow.

For the past decade, new research fields utilizing microfluidics have been formed. General micro-integration methods were proposed, and the supporting fundamental technologies were widely developed. These methodologies have made various applications in the fields of analytical and chemical synthesis, and their superior performances such as rapid, simple, and high efficient processing have been proved. Recently, the space is further downscaling to 101-103nm scale (we call the space extended-nano space). The extended-nano space located between the conventional nanotechnology (100-101nm) and micr.

Text in English.

Includes bibliographical references and index.

eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library