Amazon cover image
Image from Amazon.com

Introduction to the anisotropic geometrodynamics / Sergey Siparov.

By: Material type: TextTextSeries: K & E series on knots and everything ; v. 47.Publication details: Singapore ; Hackensack, NJ : World Scientific, ©2012.Description: 1 online resource (xii, 303 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9814340847
  • 9789814340847
Subject(s): Genre/Form: Additional physical formats: Print version:: No titleDDC classification:
  • 530.11 22
LOC classification:
  • QC173.59.G44 S57 2012
Online resources:
Contents:
1. Classical relativity : scope and beyond. 1.1. Physics and mathematics : long joint journey. 1.2. Inertial motion, relativity, special relativity. 1.3. Space-time as a model of the physical world. 1.4. Generalized theory of relativity and gravitation. 1.5. GRT -- first approximation -- predictions and tests. 1.6. Exact solutions. 1.7. Observations on the cosmological scale -- 2. Phase space-time as a model of physical reality. 2.1. Preliminary considerations. 2.2. Interpretation dilemma, variation principle, equivalence principle. 2.3. Construction of the formalism. 2.4. Gravitation force in anisotropic geometrodynamics. 2.5. Model of the gravitation source and its applications. 2.6. Electrodynamics in anisotropic space. 2.7. Approaching phase space-time. 2.8. Cosmological picture -- 3. Optic-metrical parametric resonance -- to the testing of the anisotropic geometrodynamics. 3.1. Gravitation waves detection and the general idea of opticmetrical parametric resonance. 3.2. OMPR in space maser. 3.3. Astrophysical systems. 3.4. Observations and interpretations. 3.5. On the search for the space-time anisotropy in Milky Way observations.
Summary: The aim of the book is to provide a new and fruitful approach to the challenging problems of modern physics, astrophysics, and cosmology. The well-known observations of the flat rotation curves of spiral galaxies and of the gravitational lensing effect greatly exceeding the expectations based on the classical GRT can be explained without bringing in the notion of dark matter. The Tully-Fisher law and the unusual features of globular clusters' motion become clear. It also turns out that new features appear in the cosmological picture that involves the Universe expansion and the acceleration of the latter. The theory and the first observational results of the specific galactic scale experiment based on the optical-metrical parametric resonance are also discussed in the book. Instead of the direct measurements of the extremely small gravitational waves, it appears sufficient just to register their action on the radiation of the space masers. It can be done for special cases when the source of the gravitational wave is strictly periodic and presents a close binary system. When the amount of data obtained in such observations is large enough, it would be possible to judge upon the geometrical properties of the space-time region enveloping our galaxy, the Milky Way. The foundations of the new approach stem from the equivalence principle which is the basics of the classical GRT. In order to make the presentation self-contained, the roots of century-old ideas are discussed again. This makes the book interesting not only to the specialists in the field but also to graduates and ambitious undergraduate students.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books EBSCO Available

Includes bibliographical reference (pages 295-302) and index.

1. Classical relativity : scope and beyond. 1.1. Physics and mathematics : long joint journey. 1.2. Inertial motion, relativity, special relativity. 1.3. Space-time as a model of the physical world. 1.4. Generalized theory of relativity and gravitation. 1.5. GRT -- first approximation -- predictions and tests. 1.6. Exact solutions. 1.7. Observations on the cosmological scale -- 2. Phase space-time as a model of physical reality. 2.1. Preliminary considerations. 2.2. Interpretation dilemma, variation principle, equivalence principle. 2.3. Construction of the formalism. 2.4. Gravitation force in anisotropic geometrodynamics. 2.5. Model of the gravitation source and its applications. 2.6. Electrodynamics in anisotropic space. 2.7. Approaching phase space-time. 2.8. Cosmological picture -- 3. Optic-metrical parametric resonance -- to the testing of the anisotropic geometrodynamics. 3.1. Gravitation waves detection and the general idea of opticmetrical parametric resonance. 3.2. OMPR in space maser. 3.3. Astrophysical systems. 3.4. Observations and interpretations. 3.5. On the search for the space-time anisotropy in Milky Way observations.

The aim of the book is to provide a new and fruitful approach to the challenging problems of modern physics, astrophysics, and cosmology. The well-known observations of the flat rotation curves of spiral galaxies and of the gravitational lensing effect greatly exceeding the expectations based on the classical GRT can be explained without bringing in the notion of dark matter. The Tully-Fisher law and the unusual features of globular clusters' motion become clear. It also turns out that new features appear in the cosmological picture that involves the Universe expansion and the acceleration of the latter. The theory and the first observational results of the specific galactic scale experiment based on the optical-metrical parametric resonance are also discussed in the book. Instead of the direct measurements of the extremely small gravitational waves, it appears sufficient just to register their action on the radiation of the space masers. It can be done for special cases when the source of the gravitational wave is strictly periodic and presents a close binary system. When the amount of data obtained in such observations is large enough, it would be possible to judge upon the geometrical properties of the space-time region enveloping our galaxy, the Milky Way. The foundations of the new approach stem from the equivalence principle which is the basics of the classical GRT. In order to make the presentation self-contained, the roots of century-old ideas are discussed again. This makes the book interesting not only to the specialists in the field but also to graduates and ambitious undergraduate students.

eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library