Amazon cover image
Image from Amazon.com

Recent Advancement of Thermal Fluid Engineering in the Supercritical CO2 Power Cycle

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020Description: 1 electronic resource (180 p.)ISBN:
  • books978-3-03943-017-8
  • 9783039430161
  • 9783039430178
Subject(s): Online resources: Summary: This Special Issue is a compilation of the recent advances in thermal fluid engineering related to supercritical CO2 power cycle development. The supercritical CO2 power cycle is considered to be one of the most promising power cycles for distributed power generation, waste heat recovery, and a topping cycle of coal, nuclear, and solar thermal heat sources. While the cycle benefits from dramatic changes in CO2 thermodynamic properties near the critical point, design, and analysis of the power cycle and its major components also face certain challenges due to the strong real gas effect and extreme operating conditions. This Special Issue will present a series of recent research results in heat transfer and fluid flow analyses and experimentation so that the accumulated knowledge can accelerate the development of this exciting future power cycle technology.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books Open Access Available

Open Access star Unrestricted online access

This Special Issue is a compilation of the recent advances in thermal fluid engineering related to supercritical CO2 power cycle development. The supercritical CO2 power cycle is considered to be one of the most promising power cycles for distributed power generation, waste heat recovery, and a topping cycle of coal, nuclear, and solar thermal heat sources. While the cycle benefits from dramatic changes in CO2 thermodynamic properties near the critical point, design, and analysis of the power cycle and its major components also face certain challenges due to the strong real gas effect and extreme operating conditions. This Special Issue will present a series of recent research results in heat transfer and fluid flow analyses and experimentation so that the accumulated knowledge can accelerate the development of this exciting future power cycle technology.

Creative Commons https://creativecommons.org/licenses/by/4.0/ cc https://creativecommons.org/licenses/by/4.0/

English

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library