Amazon cover image
Image from Amazon.com

Advanced Materials, Structures and Processing Technologies Based on Pulsed Laser

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021Description: 1 electronic resource (83 p.)ISBN:
  • books978-3-0365-2702-4
  • 9783036527031
  • 9783036527024
Subject(s): Online resources: Summary: Pulsed lasers are lasers with a single laser pulse width of less than 0.25 s, operating only once in every certain time interval. Commonly used pulsed lasers are nanosecond, femtosecond, and picosecond lasers. A pulsed laser produces short pulses with a short interaction time with the material, which can largely avoid impact on the thermal movement of molecules and has a minimal thermal impact on the surrounding materials, thus having significant advantages in precision microfabrication. It is now widely used in flexible electronics, chips, medicine, and other fields, such as photographic resin curing, microwelding, vision correction, heart stent manufacturing, etc. However, as an emerging processing technology, the application prospects of pulsed lasers have yet to be fully expanded, and there is still a need to continuously explore the mechanisms of interaction with materials, to manufacture advanced functional structures, and to develop advanced process technologies.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books Open Access Available

Open Access star Unrestricted online access

Pulsed lasers are lasers with a single laser pulse width of less than 0.25 s, operating only once in every certain time interval. Commonly used pulsed lasers are nanosecond, femtosecond, and picosecond lasers. A pulsed laser produces short pulses with a short interaction time with the material, which can largely avoid impact on the thermal movement of molecules and has a minimal thermal impact on the surrounding materials, thus having significant advantages in precision microfabrication. It is now widely used in flexible electronics, chips, medicine, and other fields, such as photographic resin curing, microwelding, vision correction, heart stent manufacturing, etc. However, as an emerging processing technology, the application prospects of pulsed lasers have yet to be fully expanded, and there is still a need to continuously explore the mechanisms of interaction with materials, to manufacture advanced functional structures, and to develop advanced process technologies.

Creative Commons https://creativecommons.org/licenses/by/4.0/ cc https://creativecommons.org/licenses/by/4.0/

English

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library