Amazon cover image
Image from Amazon.com

Neuronal Stochastic Variability: Influences on Spiking Dynamics and Network Activity

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Frontiers Media SA 2016Description: 1 electronic resource (156 p.)ISBN:
  • 978-2-88919-884-9
  • 9782889198849
Subject(s): Online resources: Summary: Stochastic fluctuations are intrinsic to and unavoidable at every stage of neural dynamics. For example, ion channels undergo random conformational changes, neurotransmitter release at synapses is discrete and probabilistic, and neural networks are embedded in spontaneous background activity. The mathematical and computational tool sets contributing to our understanding of stochastic neural dynamics have expanded rapidly in recent years. New theories have emerged detailing the dynamics and computational power of the balanced state in recurrent networks. At the cellular level, novel stochastic extensions to the classical Hodgkin-Huxley model have enlarged our understanding of neuronal dynamics and action potential initiation. Analytical methods have been developed that allow for the calculation of the firing statistics of simplified phenomenological integrate-and-fire models, taking into account adaptation currents or temporal correlations of the noise. This Research Topic is focused on identified physiological/internal noise sources and mechanisms. By "internal", we mean variability that is generated by intrinsic biophysical processes. This includes noise at a range of scales, from ion channels to synapses to neurons to networks. The contributions in this Research Topic introduce innovative mathematical analysis and/or computational methods that relate to empirical measures of neural activity and illuminate the functional role of intrinsic noise in the brain.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books Open Access Available

Open Access star Unrestricted online access

Stochastic fluctuations are intrinsic to and unavoidable at every stage of neural dynamics. For example, ion channels undergo random conformational changes, neurotransmitter release at synapses is discrete and probabilistic, and neural networks are embedded in spontaneous background activity. The mathematical and computational tool sets contributing to our understanding of stochastic neural dynamics have expanded rapidly in recent years. New theories have emerged detailing the dynamics and computational power of the balanced state in recurrent networks. At the cellular level, novel stochastic extensions to the classical Hodgkin-Huxley model have enlarged our understanding of neuronal dynamics and action potential initiation. Analytical methods have been developed that allow for the calculation of the firing statistics of simplified phenomenological integrate-and-fire models, taking into account adaptation currents or temporal correlations of the noise. This Research Topic is focused on identified physiological/internal noise sources and mechanisms. By "internal", we mean variability that is generated by intrinsic biophysical processes. This includes noise at a range of scales, from ion channels to synapses to neurons to networks. The contributions in this Research Topic introduce innovative mathematical analysis and/or computational methods that relate to empirical measures of neural activity and illuminate the functional role of intrinsic noise in the brain.

Creative Commons https://creativecommons.org/licenses/by/4.0/ cc https://creativecommons.org/licenses/by/4.0/

English

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library