Amazon cover image
Image from Amazon.com

Selected Papers from 2017 International Conference on Micro/Nanomachines

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: MDPI - Multidisciplinary Digital Publishing Institute 2018Description: 1 electronic resource (VIII, 170 p.)ISBN:
  • books978-3-03897-082-8
  • 9783038970828
  • 9783038970811
Subject(s): Online resources: Summary: The 2017 International Conference on Micro/Nanomachines (http://www.icmnm.org/) was held in Wuhan, China, 25-28 August, 2017. Micro/nanomotors (MNMs), which are defined as micro/nanodevices capable of converting energy into autonomous motion, can be used to pick up, transport, and release various cargoes within a liquid medium. They have important potential applications, for example, in drug delivery, biosensors, protein and cell separation, microsurgeries, and environment remediation. MNMs can be classified into two categories, according to their propulsion mechanism. In this respect, self-propelled MNMs are capable of moving autonomously without external intervention, but they either require toxic fuel or have a short lifespan. MNMs actuated by external fields, such as light, magnetic field, and acoustic waves, are not subject to these problems, do not require toxic fuels, nor give rise to by-products during the motion process. For both self-propelled and field-actuated MNMs, there is still a long way to go before we reach practical applications. The future development of MNMs should be focused on improving the energy conversion efficiency through structure optimization, exploring new propulsion mechanisms and endowing MNMs with environmental responses for self-navigation, detection, and specific operations. In this way, MNMs will approach their practical application in biomedicine, environment treatment, microengineering, etc.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books Open Access Available

Open Access star Unrestricted online access

The 2017 International Conference on Micro/Nanomachines (http://www.icmnm.org/) was held in Wuhan, China, 25-28 August, 2017. Micro/nanomotors (MNMs), which are defined as micro/nanodevices capable of converting energy into autonomous motion, can be used to pick up, transport, and release various cargoes within a liquid medium. They have important potential applications, for example, in drug delivery, biosensors, protein and cell separation, microsurgeries, and environment remediation. MNMs can be classified into two categories, according to their propulsion mechanism. In this respect, self-propelled MNMs are capable of moving autonomously without external intervention, but they either require toxic fuel or have a short lifespan. MNMs actuated by external fields, such as light, magnetic field, and acoustic waves, are not subject to these problems, do not require toxic fuels, nor give rise to by-products during the motion process. For both self-propelled and field-actuated MNMs, there is still a long way to go before we reach practical applications. The future development of MNMs should be focused on improving the energy conversion efficiency through structure optimization, exploring new propulsion mechanisms and endowing MNMs with environmental responses for self-navigation, detection, and specific operations. In this way, MNMs will approach their practical application in biomedicine, environment treatment, microengineering, etc.

Creative Commons https://creativecommons.org/licenses/by-nc-nd/4.0/ cc https://creativecommons.org/licenses/by-nc-nd/4.0/

English

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library