Amazon cover image
Image from Amazon.com

Structural colors in the realm of nature / Shuichi Kinoshita.

By: Contributor(s): Material type: TextTextPublication details: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2008.Description: 1 online resource (xiii, 352 pages) : illustrations (some color)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789812709752
  • 9812709754
  • 9812707832
  • 9789812707833
Subject(s): Genre/Form: Additional physical formats: Print version:: No titleDDC classification:
  • 591.472 22
LOC classification:
  • QL767
Online resources:
Contents:
1. Introduction. 1.1. What is structural color? 1.2. Historical overview -- 2. Fundamentals of structural coloration. 2.1. Fundamentals of properties of light. 2.2. Thin-film interference. 2.3. Multilayer interference. 2.4. Diffraction of light and diffraction grating. 2.5. Photonic crystals. 2.6. Light scattering -- 3. Butterflies and moths. 3.1. General descriptions. 3.2. Morpho butterflies. 3.3. Overview of the structural coloration in butterflies and moths -- 4. Beetles and other insects. 4.1. Overview. 4.2. Beetles. 4.3. Damselflies and dragonflies. 4.4. Shield bugs and cicadas. 4.5. Other insects -- 5. Birds. 5.1. Overview. 5.2. Peacocks, pheasants, and ducks. 5.3. Hummingbirds. 5.4. Trogons. 5.5. Pigeons. 5.6. Non-iridescent colorations -- kingfishers, parakeets, cotingas, and jays -- 6. Fish. 6.1. General description. 6.2. Static iridophores. 6.3. Motile iridophores. 6.4. Motile iridophores -- 7. Plants -- 8. Miscellaneous. 8.1. Shells. 8.2. Spiders. 8.3. Marine animals -- 9. Mathematical background. 9.1. Calculations of multilayer reflection. 9.2. Model for Morpho butterfly scale. 9.3. Antireflection effect. 9.4. Average refractive index. 9.5. Cholesteric liquid crystal.
Summary: Coloring in nature comes mostly from inherent colors of materials, though it sometimes has a purely physical origin such as diffraction or interference of light. The latter, called structural color or iridescence, has long been a problem of scientific interest. Recently, structural colors have attracted great interest because various photonic architectures, now developing in modern technologies, have been spontaneously created in the self-organization process and have been extensively used as one of the important visual functions. In this book, the fundamental optical properties underlying structural colors are explained, and these mysteries of nature are surveyed from the viewpoint of biological diversity and according to their sophisticated structures. The book proposes a general principle of structural colors based on the structural hierarchy and presents up-to-date applications.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books EBSCO Available

Includes bibliographical references (pages 265-285) and indexes.

1. Introduction. 1.1. What is structural color? 1.2. Historical overview -- 2. Fundamentals of structural coloration. 2.1. Fundamentals of properties of light. 2.2. Thin-film interference. 2.3. Multilayer interference. 2.4. Diffraction of light and diffraction grating. 2.5. Photonic crystals. 2.6. Light scattering -- 3. Butterflies and moths. 3.1. General descriptions. 3.2. Morpho butterflies. 3.3. Overview of the structural coloration in butterflies and moths -- 4. Beetles and other insects. 4.1. Overview. 4.2. Beetles. 4.3. Damselflies and dragonflies. 4.4. Shield bugs and cicadas. 4.5. Other insects -- 5. Birds. 5.1. Overview. 5.2. Peacocks, pheasants, and ducks. 5.3. Hummingbirds. 5.4. Trogons. 5.5. Pigeons. 5.6. Non-iridescent colorations -- kingfishers, parakeets, cotingas, and jays -- 6. Fish. 6.1. General description. 6.2. Static iridophores. 6.3. Motile iridophores. 6.4. Motile iridophores -- 7. Plants -- 8. Miscellaneous. 8.1. Shells. 8.2. Spiders. 8.3. Marine animals -- 9. Mathematical background. 9.1. Calculations of multilayer reflection. 9.2. Model for Morpho butterfly scale. 9.3. Antireflection effect. 9.4. Average refractive index. 9.5. Cholesteric liquid crystal.

Coloring in nature comes mostly from inherent colors of materials, though it sometimes has a purely physical origin such as diffraction or interference of light. The latter, called structural color or iridescence, has long been a problem of scientific interest. Recently, structural colors have attracted great interest because various photonic architectures, now developing in modern technologies, have been spontaneously created in the self-organization process and have been extensively used as one of the important visual functions. In this book, the fundamental optical properties underlying structural colors are explained, and these mysteries of nature are surveyed from the viewpoint of biological diversity and according to their sophisticated structures. The book proposes a general principle of structural colors based on the structural hierarchy and presents up-to-date applications.

eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library