Amazon cover image
Image from Amazon.com

Handbook of sustainable energy / W.H. Lee and V.G. Cho, editors.

Contributor(s): Material type: TextTextSeries: Energy science, engineering and technology seriesPublication details: New York : Nova Science Publishers, ©2010.Description: 1 online resource (xxv, 803 pages) : illustrations (some color)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781617619618
  • 1617619612
Subject(s): Genre/Form: Additional physical formats: Print version:: Handbook of sustainable energy.DDC classification:
  • 333.79 22
LOC classification:
  • TJ808.3 .H36 2010eb
Online resources:
Contents:
HANDBOOK OF SUSTAINABLE ENERGY -- HANDBOOK OF SUSTAINABLE ENERGY -- LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA -- CONTENTS -- PREFACE -- Chapter 1: DESIGN OF A STAND-ALONE POWER SYSTEM USING RENEWABLE ENERGY SOURCES AND LONG-TERM HYDROGEN STORAGE -- 1. System Objectives -- 1.1. Introduction -- 2. Description and Mathematical Models for System Units -- 2.1. System Description -- 2.1.1. Photovoltaic System -- 2.1.2. Wind Generators -- 2.1.3. Batteries -- 2.1.4. Electrolyzers -- 2.1.5. Hydrogen Storage -- 2.1.6. Fuel Cells
2.1.7. Power Electronic Converters2.2. Mathematical Models -- 2.2.1. Photovoltaic System (PV-System) -- 2.2.2. Wind Generator -- 2.2.3. Lead-Acid accumulator (Battery) -- 2.2.4. Polymer Electrolyte Membrane (PEM) Electrolyzer -- 2.2.5. Medium Pressure Hydrogen Storage (H2-Storage) -- 2.2.6. PEM Fuel Cell -- 2.3. Description of Operating Strategies -- 2.3.1. Main Power Flows -- 2.3.2. Power Management Strategies -- 2.3.3. Parametric Sensitivity Studies -- 3. Integration � System Architecture -- 3.1. System Architecture -- 3.2. Basic Technical Data
3.3. Actual System Integration3.3.1. Electrical System -- 3.3.2 Electrochemical System and Power Backup -- 3.4. Monitoring and Control -- 3.5. Technical Challenges (Protocol Integration) -- 3.6. Automated Procedure -- 4. Optimization -- 4.1. Operating Decisions in the Integrated Power System -- 4.2. Conventional and Optimization-Based Engineering Design -- 4.3. The Optimization Problem Formulation Sequence -- 4.3.1. Model Development -- 4.3.2. Design Variables -- 4.3.3. Objective Function -- 4.3.4. Constraints -- 4.3.5. Optimization Methods
4.4. Example of Optimization Problem Formulation for the Integrated PowerSystem4.4.1. Problem Formulation -- 4.4.2. Design Variables and Constraints -- 4.4.3. Objective Function -- 4.4.4. Optimization Method -- 4. Epilogue -- References -- Chapter 2: BIORESOURCE-BASED ENERGYFOR SUSTAINABLE SOCIETIES -- Abstract -- 1. Sustainable Energy and Sustainable Societies -- 2. Indicators of Ecosystem Complexity and Sustainable Energy Consumption -- 2.1. Assessment of Sustainable Energy Using Life-Cycle Assessment -- 2.2. Indicators of Energy Sustainability
2.2.1. Energy Choices Based on the Energy Return Ratio2.2.2. Environmental and Social Metrics -- 2.2.2.1. Land Conversion -- 2.2.2.2. Fossil Carbon Emissions -- 2.2.2.3. Chemical Pollution From Energy Production and Use -- 3. Renewable Energy Resources:Indigenous Communities and Rural Societies -- 3.1. Biomass -- 3.2. Wind -- 3.3. Solar -- 3.4. LCA Indicators for Fossil Fuels and Renewable Energy Resources -- 4. Social and Cultural Factors in the Consideration of Energy Resource Selection -- 4.1. Sustainable Societies Do not Equate to Sustainable Energy Production
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books EBSCO Available

Includes bibliographical references and index.

Print version record.

HANDBOOK OF SUSTAINABLE ENERGY -- HANDBOOK OF SUSTAINABLE ENERGY -- LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA -- CONTENTS -- PREFACE -- Chapter 1: DESIGN OF A STAND-ALONE POWER SYSTEM USING RENEWABLE ENERGY SOURCES AND LONG-TERM HYDROGEN STORAGE -- 1. System Objectives -- 1.1. Introduction -- 2. Description and Mathematical Models for System Units -- 2.1. System Description -- 2.1.1. Photovoltaic System -- 2.1.2. Wind Generators -- 2.1.3. Batteries -- 2.1.4. Electrolyzers -- 2.1.5. Hydrogen Storage -- 2.1.6. Fuel Cells

2.1.7. Power Electronic Converters2.2. Mathematical Models -- 2.2.1. Photovoltaic System (PV-System) -- 2.2.2. Wind Generator -- 2.2.3. Lead-Acid accumulator (Battery) -- 2.2.4. Polymer Electrolyte Membrane (PEM) Electrolyzer -- 2.2.5. Medium Pressure Hydrogen Storage (H2-Storage) -- 2.2.6. PEM Fuel Cell -- 2.3. Description of Operating Strategies -- 2.3.1. Main Power Flows -- 2.3.2. Power Management Strategies -- 2.3.3. Parametric Sensitivity Studies -- 3. Integration � System Architecture -- 3.1. System Architecture -- 3.2. Basic Technical Data

3.3. Actual System Integration3.3.1. Electrical System -- 3.3.2 Electrochemical System and Power Backup -- 3.4. Monitoring and Control -- 3.5. Technical Challenges (Protocol Integration) -- 3.6. Automated Procedure -- 4. Optimization -- 4.1. Operating Decisions in the Integrated Power System -- 4.2. Conventional and Optimization-Based Engineering Design -- 4.3. The Optimization Problem Formulation Sequence -- 4.3.1. Model Development -- 4.3.2. Design Variables -- 4.3.3. Objective Function -- 4.3.4. Constraints -- 4.3.5. Optimization Methods

4.4. Example of Optimization Problem Formulation for the Integrated PowerSystem4.4.1. Problem Formulation -- 4.4.2. Design Variables and Constraints -- 4.4.3. Objective Function -- 4.4.4. Optimization Method -- 4. Epilogue -- References -- Chapter 2: BIORESOURCE-BASED ENERGYFOR SUSTAINABLE SOCIETIES -- Abstract -- 1. Sustainable Energy and Sustainable Societies -- 2. Indicators of Ecosystem Complexity and Sustainable Energy Consumption -- 2.1. Assessment of Sustainable Energy Using Life-Cycle Assessment -- 2.2. Indicators of Energy Sustainability

2.2.1. Energy Choices Based on the Energy Return Ratio2.2.2. Environmental and Social Metrics -- 2.2.2.1. Land Conversion -- 2.2.2.2. Fossil Carbon Emissions -- 2.2.2.3. Chemical Pollution From Energy Production and Use -- 3. Renewable Energy Resources:Indigenous Communities and Rural Societies -- 3.1. Biomass -- 3.2. Wind -- 3.3. Solar -- 3.4. LCA Indicators for Fossil Fuels and Renewable Energy Resources -- 4. Social and Cultural Factors in the Consideration of Energy Resource Selection -- 4.1. Sustainable Societies Do not Equate to Sustainable Energy Production

eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library