Amazon cover image
Image from Amazon.com

Strain and dislocation gradients from diffraction : spatially-resolved local structure and defects / editors, Rozaliya Barabash, Gene Ice.

Contributor(s): Material type: TextTextPublisher: London : Imperial College Press, 2014Distributor: Singapore : World Scientific, [date of distribution not identified]Copyright date: ©2014Description: 1 online resource (478 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781908979636
  • 1908979631
Subject(s): Genre/Form: Additional physical formats: Print version:: Strain and dislocation gradients from diffraction : spatially-resolved local structure and defects.DDC classification:
  • 539.7222 23
LOC classification:
  • QC482.D5 S773 2014eb
Other classification:
  • UQ 5000
Online resources:
Contents:
Ch. 1. Diffraction analysis of defects: State of the art / Rozaliya I. Barabash and Gene E. Ice -- ch. 2. X-ray Laue diffraction microscopy in 3D at the advanced photon source / Wenjun Liu and Gene E. Ice -- ch. 3. High-energy transmission Laue (HETL) micro-beam diffraction / Felix Hofmann and Alexander M. Korsunsky -- ch. 4. XMAS: A versatile tool for analyzing synchrotron X-ray microdiffraction data / Nobumichi Tamura -- ch. 5. Laue microdiffraction at the ESRF / Odile Robach [and others] -- ch. 6. 3D X-ray diffraction microscopy / Henning Friis Poulsen [and others] -- ch. 7. Grain centre mapping -- 3DXRD measurements of average grain characteristic / Jette Oddershede -- ch. 8. Three-dimensional X-ray diffraction (3DXRD) imaging techniques / Wolfgang Ludwig, Andrew King and Peter Reischig -- ch. 9. High-resolution reciprocal space mapping for characterizing deformation structures / Wolfgang Pantleon [and others] -- ch. 10. Reconstructing 2D and 3D X-ray orientation maps from white-beam Laue / Jonathan Z. Tischler -- ch. 11. Energy-variable X-ray diffraction for studying polycrystalline materials with high depth resolution / Emil Zolotoyabko -- ch. 12. Microstructure detail extraction via EBSD: An overview / David Fullwood -- ch. 13. High-pressure studies with microdiffraction / Wenge Yang.
Summary: This book highlights emerging diffraction studies of strain and dislocation gradients with mesoscale resolution, which is currently a focus of research at laboratories around the world. While ensemble-average diffraction techniques are mature, grain and subgrain level measurements needed to understand real materials are just emerging. In order to understand the diffraction signature of different defects, it is necessary to understand the distortions created by the defects and the corresponding changes in the reciprocal space of the non-ideal crystals. Starting with a review of defect classifications based on their displacement fields, this book then provides connections between different dislocation arrangements, including geometrically necessary and statistically stored dislocations, and other common defects and the corresponding changes in the reciprocal space and diffraction patterns. Subsequent chapters provide an overview of microdiffraction techniques developed during the last decade to extract information about strain and dislocation gradients. X-ray microdiffraction is a particularly exciting application compared with alternative probes of local crystalline structure, orientation and defect density, because it is inherently non-destructive and penetrating.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books EBSCO Available

Includes bibliographical references at the end of each chapters and indexes.

Online resource; title from PDF title page (ebrary, viewed May 27, 2014).

Ch. 1. Diffraction analysis of defects: State of the art / Rozaliya I. Barabash and Gene E. Ice -- ch. 2. X-ray Laue diffraction microscopy in 3D at the advanced photon source / Wenjun Liu and Gene E. Ice -- ch. 3. High-energy transmission Laue (HETL) micro-beam diffraction / Felix Hofmann and Alexander M. Korsunsky -- ch. 4. XMAS: A versatile tool for analyzing synchrotron X-ray microdiffraction data / Nobumichi Tamura -- ch. 5. Laue microdiffraction at the ESRF / Odile Robach [and others] -- ch. 6. 3D X-ray diffraction microscopy / Henning Friis Poulsen [and others] -- ch. 7. Grain centre mapping -- 3DXRD measurements of average grain characteristic / Jette Oddershede -- ch. 8. Three-dimensional X-ray diffraction (3DXRD) imaging techniques / Wolfgang Ludwig, Andrew King and Peter Reischig -- ch. 9. High-resolution reciprocal space mapping for characterizing deformation structures / Wolfgang Pantleon [and others] -- ch. 10. Reconstructing 2D and 3D X-ray orientation maps from white-beam Laue / Jonathan Z. Tischler -- ch. 11. Energy-variable X-ray diffraction for studying polycrystalline materials with high depth resolution / Emil Zolotoyabko -- ch. 12. Microstructure detail extraction via EBSD: An overview / David Fullwood -- ch. 13. High-pressure studies with microdiffraction / Wenge Yang.

This book highlights emerging diffraction studies of strain and dislocation gradients with mesoscale resolution, which is currently a focus of research at laboratories around the world. While ensemble-average diffraction techniques are mature, grain and subgrain level measurements needed to understand real materials are just emerging. In order to understand the diffraction signature of different defects, it is necessary to understand the distortions created by the defects and the corresponding changes in the reciprocal space of the non-ideal crystals. Starting with a review of defect classifications based on their displacement fields, this book then provides connections between different dislocation arrangements, including geometrically necessary and statistically stored dislocations, and other common defects and the corresponding changes in the reciprocal space and diffraction patterns. Subsequent chapters provide an overview of microdiffraction techniques developed during the last decade to extract information about strain and dislocation gradients. X-ray microdiffraction is a particularly exciting application compared with alternative probes of local crystalline structure, orientation and defect density, because it is inherently non-destructive and penetrating.

eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library