TY - BOOK AU - Franco Ariza,Camilo Andrés AU - Cortés Correa,Farid Bernardo TI - Formation damage in oil and gas reservoirs: nanotechnology applications for its inhibition/remediation T2 - Nanotechnology science and technology SN - 9781536139037 AV - TN871.24 U1 - 622/.338 23 PY - 2018///] CY - Hauppauge, New York PB - Nova Science Publishers, Inc. KW - Formation damage (Petroleum engineering) KW - Nanofluids KW - Industrial applications KW - Nanofluides KW - Applications industrielles KW - TECHNOLOGY & ENGINEERING / Mining KW - bisacsh KW - fast KW - Electronic books N1 - Includes bibliographical references and index; Intro -- Contents -- Preface -- Chapter 1 -- Multiparameter Methodology for Skin-Factor Characterization -- Abstract -- Nomenclature -- 1. Scope of Model -- 2. Description of the Multiparameter Methodology -- 2.1. Mineral Scaling Parameter ( ) -- 2.2. Organic Scaling Parameter ( ) -- 2.3. Fines Blockage Parameter (FBP) -- 2.4. Induced Damage Parameter ( ) -- 2.5. Relative Permeability Parameter ( ) -- 2.6. Alternative Calculation for the Normalized Values of the Damage Subparameters -- 3. Some Model Outputs -- Conclusion -- Acknowledgments -- References -- Chapter 2 -- Precipitation of Particles in Oil Wells: A Methodology for Estimating the Level of Risk of Formation Damage -- Abstract -- 1. Introduction -- 2. Asphaltene Deposits -- 2.1. General Concepts -- 2.2. Precipitation of Asphaltene -- 2.2.1. The Solubility Parameter -- 2.2.2. Stability of Asphaltene -- 2.2.3. Mathematical Model of Precipitation of Asphaltene -- 3. Paraffin Deposits -- 3.1. General Concepts -- 3.2. Precipitation of Paraffin -- 3.2.1. Stability of Paraffin -- 3.2.2. Mathematical Model of Precipitation of Paraffin -- 4. Fines Deposits -- 4.1. General Concepts -- 4.2. Precipitation of Fines -- 4.2.1. Stability of Fines -- 4.2.2. Mathematical Model of Deposition of Fines -- 5. Diagnostics and Levels of Risk of Formation Damage -- Acknowledgments -- References -- Chapter 3 -- Nanoparticle Fabrication Methods -- Abstract -- 1. Introduction -- 2. Materials and Methods -- 2.1. Top-Down -- 2.1.1. Reactive Grinding/Ball Milling -- 2.2. Bottom-Up -- 2.2.1. Solvothermal -- 2.2.2. Precipitation and Co-Precipitation -- 2.2.3. Ultrasound-Assisted Nanoparticle Synthesis [50] -- 2.2.4. Microwave-Assisted Nanoparticle Synthesis -- 2.3. Synthesis of Carbon-Based Nanomaterials: History and Perspectives -- 2.3.1. Graphene -- 2.3.1.1. Structure and Properties; 2.3.1.2. Synthesis -- 2.3.1.2.1. Mechanical Exfoliation -- 2.3.1.2.2. Chemical Exfoliation -- 2.3.1.2.3. Electrochemical Exfoliation -- 2.3.1.2.4. Epitaxial Growth -- 2.3.1.2.5. Chemical Vapor Deposition -- 2.3.1.2.6. Chemical Synthesis -- 2.3.1.2.7. Unzipping Carbon Nanotubes -- 2.3.2. Carbon Nanotubes -- 2.3.2.1. Structure and Properties -- 2.3.2.2. Synthesis -- 2.3.2.2.1. Arc-Discharge Method -- 2.3.2.2.2. Laser Ablation -- 2.3.2.2.3. Chemical Vapor Deposition -- 2.3.2.2.4. Other Methods -- 2.3.3. Carbon Nanofibers -- 2.3.4. Nanodiamonds -- 2.3.5. Carbon Nanospheres -- 2.3.5.1. Synthesis -- 2.3.5.1.1. Chemical Vapor Deposition/Pyrolysis of Hydrocarbons -- 2.3.5.1.2. Hydrothermal Treatment -- 2.3.5.1.3. Sol-Gel Polymerization -- 2.4. Synthesis of Metallic Nanomaterials, Bimetallics, and Ceramics -- 2.4.1. Synthesis of the Ceramic Materials -- 2.4.2. Nanomaterials Summary -- Conclusion -- References -- Chapter 4 -- Wettability Alteration in Sandstone Cores Using Nanofluids Based on Silica Gel -- Abstract -- Introduction -- 1. Wettability Alteration of Porous Medium -- 2. Nanoparticles for Wettability Alteration of Porous Medium -- 3. Materials and Methods -- 3.1. Materials -- 3.2. Methods -- 3.1.1. Synthesis of Silica (SiO2) Nanoparticles -- 3.1.2. Nanoparticles Characterization -- 3.1.3. Tests for Determining the Wettability -- 3.1.4. Design of the Experiments -- 3.1.5. Displacement Tests -- 4. Results -- 4.1. Synthesis and Characterization of the Nanoparticles -- 4.2. Spontaneous Imbibition Method -- 4.3. Contact Angle Method -- 4.4. Displacement Test -- Conclusion -- Acknowledgments -- References -- Chapter 5 -- Synergy of SiO2 Nanoparticle-Polymer in Enhanced Oil Recovery Process to Avoid Formation Damage Caused by Retention in Porous Media and Improve Resistance to Degradative Effects -- Abstract -- 1. Introduction; 2. Formation Damage in Polymer Flooding -- 3. Nanoparticles in Polymer Flooding -- 3. Materials and Methods -- 3.1. Materials -- 3.2. Methods -- 3.2.1. Polymer Evaluation -- 3.2.2. Isotherms of Adsorption and Desorption -- 3.2.3. Retention Test -- 3.2.4. Measurement of Aggregate Size -- 3.2.5. Rheological Behavior and Stability in Time -- 4. Modeling -- 4.1. Adsorption Isotherms -- 4.2. Rheological Behavior -- 5. Results -- 5.1. Polymer Evaluation -- 5.2. Adsorption and Desorption Tests -- 5.3. Measurement of Aggregate Size -- 5.4. Retention Test -- 5.5. Rheological Behavior -- 5.5.1. Stability of Rheological Behavior in Time -- Conclusion -- Acknowledgments -- References -- Chapter 6 -- Inhibition of the Formation Damage due to Fines Migration on Low-Permeability Reservoirs of Sandstone Using Silica-Based Nanofluids: From Laboratory to a Successful Field Trial -- Abstract -- 1. Introduction -- 2. Fines Migration Damage Overview -- 3. Nanoparticles for Inhibiting the Formation Damage by Fines Migration -- 4. Materials and Methods -- 4.1. Materials -- 4.1.1. Nanoparticles -- 4.1.2. Reagents -- 4.1.3. Sand-Pack, Porous Media and Fines Suspension -- 4.2. Methods -- 4.2.1. Fines Retention Test: Low Pressure -- 4.2.2. Fines Retention Test: High Pressure -- 5. Results -- 5.1. Methods -- 5.1.1. Fines Retention Test: Low Pressure -- 5.1.2. Estimation of the Critical Rate of the Fines Migration -- 5.1.3. Field Trial -- Conclusion -- Acknowledgments -- References -- Chapter 7 -- Application of Nanofluids for Improving Oil Mobility in Heavy Oil and Extra-Heavy Oil: A Field Test -- Abstract -- 1. Introduction -- 2. Experimental -- 2.1. Materials -- 2.1.1. Crude Oils -- 2.1.2. Solvents and Reagents -- 2.2. Methods -- 2.2.1. Asphaltene Extraction Protocol -- 2.2.2. Surface Area and Particle Size Measurements -- 2.2.3. Equilibrium Adsorption Isotherms; 2.2.4. Viscosity Measurements -- 2.3. Fluid Injection Tests -- 2.3.1. Porous Media -- 2.3.2. Preparation of the Injection Fluids -- 2.3.3. Experimental Setup and Procedure -- 3. Results and Discussion -- 3.1. Nanoparticle Characterization -- 3.2. Batch Adsorption Test: The Equilibrium Isotherm of Asphaltenes Adsorption onto the Nanoparticles -- 3.3. Viscosity Measurements -- 3.4. Core Displacement Tests -- 4. Field Application -- 4.1. CH Field Results -- 4.2. Ca Field Results -- Conclusion -- Acknowledgments -- References -- Chapter 8 -- Application of Nanofluids in Field for Inhibition of Asphaltene Formation Damage -- Abstract -- 1. Introduction -- 2. Materials and Methods -- 2.1. Materials -- 2.1.1. Nanoparticles -- 2.1.2. n-C7 asphaltene -- 2.2. Experimental Methods -- 2.2.1. Adsorption Experiments -- 2.2.2. Core-flooding Tests -- 2.3. Field Trial conditions -- 2.3.1. Well Candidate Selection -- 2.3.2. Stimulation and Inhibition Job Strategy in CP1 Sur Well -- 3. Results and Discussions -- 3.1. Adsorption Kinetics -- 3.2. Core-Flooding Test with Nanofluid -- 3.3. Field Application -- Conclusion -- References -- About the Editors -- Index -- Blank Page UR - https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1924963 ER -