TY - BOOK AU - Caruso,Gerardo TI - Nanoparticles and brain tumor treatment T2 - Biomedical and nanomedical technologies SN - 9781606504086 AV - R857.N34 N253 2012 U1 - 610.284 23 PY - 2012/// CY - New York, N.Y., [New York, N.Y.] (222 East 46th Street, New York, NY 10017) PB - ASME, Momentum Press KW - Nanomedicine KW - Nanoparticles KW - Brain KW - Tumors KW - Treatment KW - Nanotechnology KW - Brain Neoplasms KW - therapy KW - Nanoparticules KW - Cerveau KW - Tumeurs KW - Traitement KW - Nanomédecine KW - MEDICAL KW - Instruments & Supplies KW - bisacsh KW - fast KW - Nanoparticles in Brain Tumor Treatment KW - Nanoparticle Drug Delivery KW - Nanoparticle Targeting KW - Blood-Brain Barrier KW - Glioma KW - Astrocytoma KW - Glioblastoma KW - Brain Tumor KW - Glioma Treatment KW - Brain Tumor Drug Targeting KW - Angiogenesis KW - Polymeric KW - Nanoparticles and Brain Tumors KW - Carbon Nanotubes and Brain Tumors KW - Fullerenes and Brain Tumors KW - Silica Nanoparticles and Brain Tumors KW - Micelle Nanoparticles and Brain Tumors KW - Liposome and Brain Tumors KW - Electronic books N1 - Includes bibliographical references (pages 81-99); 1. Introduction; 2. Glioma biology -- 2.1 Invasion and angiogenesis; 3. Blood-brain barrier -- 3.1 Blood-brain barrier physiology -- 3.2 Blood-brain barrier transport systems; 4. Nanomedicine and nanotechnology -- 4.1 Nanoparticle drug delivery -- 4.1.1 Nanoparticle distribution -- 4.1.2 Nanoparticle functionalization -- 4.1.3 Nanoparticle targeting -- 4.2 Nanomedicine and cancer -- 4.3 Nanomedicine and toxicity; 5. Nanoparticle technologies -- 5.1 Polymeric and polymer-drug conjugate nanoparticles -- 5.2 Micelle nanoparticles -- 5.3 Liposomes -- 5.4 Gold and silver nanoparticles -- 5.5 Metal oxide -- 5.6 Magnetic nanoparticles -- 5.7 Carbon nanotubes -- 5.8 Fullerenes -- 5.9 Peptides nanoparticles -- 5.10 Silica nanoparticles -- 5.11 Quantum dots -- 5.12 Dendrimers; 6. Nanomedicine applications in brain tumors -- 6.1 Brain tumor drug targeting -- 6.1.1 Systemic approaches -- 6.1.2 Physiological approaches -- 6.1.2.1 Receptor-mediated transcytosis -- 6.1.2.2 Adsorptive-mediated transcytosis -- 6.1.2.3 Efflux pump inhibition -- 6.1.2.4 Cell-mediated drug transport -- 6.1.3 Direct CNS approaches -- 6.1.3.1 Intracerebral routes -- 6.1.4 Drug modifications and prodrugs; 7. Experimental studies; 8. Conclusions -- References N2 - Despite progresses in surgery, radiotherapy, and in chemotherapy, an effective curative treatment of gliomas does not yet exist. Mortality is still close to 100% and the average survival of patients with GBM is less than 1 year. The efficacy of current anti-cancer strategies in brain tumors is limited by the lack of specific therapies against malignant cells. Besides, the delivery of the drugs to brain tumors is limited by the presence of the blood brain barrier. The oncogenesis of gliomas is characterized by several biological processes and genetic alterations, involved in the neoplastic transformation. The modulation of gene expression to more levels, such as DNA, mRNA, proteins and transduction signal pathways, may be the most effective modality to down-regulate or silence some specific gene functions. Gliomas are characterized by extensive microvascular proliferation and a higher degree of vasculature. In malignant gliomas targeted therapies efficacy is low. In this complex field, it seems to be very important to improve specific selective drugs delivery systems. Drugs, antisense oligonucleotides, small interference RNAs, engineered monoclonal antibodies and other therapeutic molecules may diffuse into CNS overcoming the BBB. Nanotechnology could be used both to improve the treatment efficacy and to reduce the adverse side effects UR - https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=501120 ER -