Amazon cover image
Image from Amazon.com

Chapter Advancing and Integrating 'Biomonitoring 2.0' with New Molecular Tools for Marine Biodivesity and Ecosystem Assessments

By: Contributor(s): Material type: TextTextLanguage: English Publication details: Boca Raton, Abingdon Taylor & Francis 2023Description: 1 electronic resource (33 p.)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781003363873
  • 9781003363873-7
  • 9781032426969
  • 9781032548456
Subject(s): Online resources: Summary: Global declines in biodiversity have become increasingly severe. Traditional monitoring approaches for assessing marine species distributions and abundances are time consuming, costly, and manpower intensive. Fortunately, rapid progress of sequencing technologies from first-generation to high-throughput sequencing have resulted in improvements in experimental techniques. These advances have accelerated rates of species discovery and identification, enabling community-level biomonitoring - the 'Biomonitoring 2.0' framework. Simultaneous multispecies identifications in mixed-sample pools are now mainstream with DNA metabarcoding, upscaling monitoring from the individual specimen to the ecosystem scale. In this review, we examine the progress of DNA metabarcoding over the last decade in the characterisation of marine macrobiota to microbial communities. By melding molecular techniques and more traditional taxonomic tools, this integrative Biomonitoring 2.0 approach is tailored to improve the overall effectiveness of biomonitoring. As such, we here assess its accuracy, expertise requirement, general applicability, time, cost-effectiveness, and throughput for biomonitoring. We highlight various methodological challenges that must be considered during implementation, including completeness of reference databases, representativeness of sequencing read counts for quantitative estimates, and supplementation with environmental RNA for discerning live signals from legacy DNA. Finally, we conclude with an outlook of the enhanced Biomonitoring 2.0 framework for mass adoption by ecologists and managers, as well as the prospects of emerging rapid detection technologies for ecosystem surveillance.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books Open Access Available

Open Access Unrestricted online access star

Global declines in biodiversity have become increasingly severe. Traditional monitoring approaches for assessing marine species distributions and abundances are time consuming, costly, and manpower intensive. Fortunately, rapid progress of sequencing technologies from first-generation to high-throughput sequencing have resulted in improvements in experimental techniques. These advances have accelerated rates of species discovery and identification, enabling community-level biomonitoring - the 'Biomonitoring 2.0' framework. Simultaneous multispecies identifications in mixed-sample pools are now mainstream with DNA metabarcoding, upscaling monitoring from the individual specimen to the ecosystem scale. In this review, we examine the progress of DNA metabarcoding over the last decade in the characterisation of marine macrobiota to microbial communities. By melding molecular techniques and more traditional taxonomic tools, this integrative Biomonitoring 2.0 approach is tailored to improve the overall effectiveness of biomonitoring. As such, we here assess its accuracy, expertise requirement, general applicability, time, cost-effectiveness, and throughput for biomonitoring. We highlight various methodological challenges that must be considered during implementation, including completeness of reference databases, representativeness of sequencing read counts for quantitative estimates, and supplementation with environmental RNA for discerning live signals from legacy DNA. Finally, we conclude with an outlook of the enhanced Biomonitoring 2.0 framework for mass adoption by ecologists and managers, as well as the prospects of emerging rapid detection technologies for ecosystem surveillance.

Temasek Foundation

Creative Commons https://creativecommons.org/licenses/by-nc-nd/4.0/ cc

https://creativecommons.org/licenses/by-nc-nd/4.0/

English

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library