Chapter Transport Protocol Performance and Impact on QoS while on the Move in Current and Future Low Latency Deployments

By: Contributor(s): Material type: TextTextLanguage: English Publication details: InTechOpen 2018Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • intechopen.71779
Subject(s): Online resources: Summary: Transport protocols and mobile networks have evolved independently leading to a lack of adaptability and quality of service (QoS) degradation while running under the variability circumstances present in cellular access. This chapter evaluates the performance of state-of-the-art transmission control protocol (TCP) implementations in challenging mobility scenarios under 4G latencies and low delays that model the proximity service provisioning of forthcoming 5G networks. The evaluation is focused on selecting the most appropriate TCP flavor for each scenario taking into account two metrics: (1) the goodput-based performance and (2) a balanced performance metric that includes parameters based on goodput, delay and retransmitted packets. The results show that mobility scenarios under 4G latencies require more aggressive TCP solutions in order to overcome the high variability in comparison with low latency conditions. Bottleneck Bandwidth and Round-Trip Time-RTT (BBR) provides better scalability than others and Illinois is more capable of sustaining the goodput with big variability between consecutive samples. Besides, CUBIC performs better in lower available capacity scenarios and regarding the balanced metric. In reduced end-to-end latencies, the most suitable congestion control algorithms (CCAs) to maximize the goodput are NewReno (low available capacity) and CUBIC (high available capacity) when moving with continuous capacity increases. Additionally, BBR shows a balanced and controlled behavior in most of the scenarios.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books Open Access Available

Open Access Unrestricted online access star

Transport protocols and mobile networks have evolved independently leading to a lack of adaptability and quality of service (QoS) degradation while running under the variability circumstances present in cellular access. This chapter evaluates the performance of state-of-the-art transmission control protocol (TCP) implementations in challenging mobility scenarios under 4G latencies and low delays that model the proximity service provisioning of forthcoming 5G networks. The evaluation is focused on selecting the most appropriate TCP flavor for each scenario taking into account two metrics: (1) the goodput-based performance and (2) a balanced performance metric that includes parameters based on goodput, delay and retransmitted packets. The results show that mobility scenarios under 4G latencies require more aggressive TCP solutions in order to overcome the high variability in comparison with low latency conditions. Bottleneck Bandwidth and Round-Trip Time-RTT (BBR) provides better scalability than others and Illinois is more capable of sustaining the goodput with big variability between consecutive samples. Besides, CUBIC performs better in lower available capacity scenarios and regarding the balanced metric. In reduced end-to-end latencies, the most suitable congestion control algorithms (CCAs) to maximize the goodput are NewReno (low available capacity) and CUBIC (high available capacity) when moving with continuous capacity increases. Additionally, BBR shows a balanced and controlled behavior in most of the scenarios.

Creative Commons https://creativecommons.org/licenses/by/3.0/ cc

https://creativecommons.org/licenses/by/3.0/

English

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library