Amazon cover image
Image from Amazon.com

The Plaston Concept : Plastic Deformation in Structural Materials

By: Contributor(s): Material type: ArticleArticleLanguage: English Publication details: Singapore Springer Nature 2022Description: 1 electronic resource (278 p.)ISBN:
  • 978-981-16-7715-1
  • 9789811677151
Subject(s): Online resources: Summary: This open access book presents the novel concept of plaston, which accounts for the high ductility or large plastic deformation of emerging high-performance structural materials, including bulk nanostructured metals, hetero-nanostructured materials, metallic glasses, intermetallics, and ceramics. The book describes simulation results of the collective atomic motion associated with plaston, by computational tools such as first-principle methods with predictive performance and large-scale atom-dynamics calculations. Multi-scale analyses with state-of-the art analytical tools nano/micro pillar deformation and nano-indentation experiments are also described. Finally, through collaborative efforts of experimental and computational work, examples of rational design and development of new structural materials are given, based on accurate understanding of deformation and fracture phenomena. This publication provides a valuable contribution to the field of structural materials research.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books Open Access Available

Open Access star Unrestricted online access

This open access book presents the novel concept of plaston, which accounts for the high ductility or large plastic deformation of emerging high-performance structural materials, including bulk nanostructured metals, hetero-nanostructured materials, metallic glasses, intermetallics, and ceramics. The book describes simulation results of the collective atomic motion associated with plaston, by computational tools such as first-principle methods with predictive performance and large-scale atom-dynamics calculations. Multi-scale analyses with state-of-the art analytical tools nano/micro pillar deformation and nano-indentation experiments are also described. Finally, through collaborative efforts of experimental and computational work, examples of rational design and development of new structural materials are given, based on accurate understanding of deformation and fracture phenomena. This publication provides a valuable contribution to the field of structural materials research.

Ministry of Education, Culture, Sports, Science and Technology

Creative Commons by/4.0/ cc http://creativecommons.org/licenses/by/4.0/

English

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library