Amazon cover image
Image from Amazon.com

Lectures on Chern-Weil theory and Witten deformations / Weiping Zhang.

By: Material type: TextTextSeries: Nankai tracts in mathematics ; v. 4.Publication details: River Edge, N.J. : World Scientific, ©2001.Description: 1 online resource (xi, 117 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9812386580
  • 9789812386588
Subject(s): Genre/Form: Additional physical formats: Print version:: Lectures on Chern-Weil theory and Witten deformations.DDC classification:
  • 514/.72 21
LOC classification:
  • QA613.618 .Z43 2001eb
Other classification:
  • O177. 3
Online resources:
Contents:
Ch. 1. Chern-Weil theory for characteristic classes. 1.1. Review of the de Rham cohomology theory. 1.2. Connections on vector bundles. 1.3. The curvature of a connection. 1.4. Chern-Weil theorem. 1.5. Characteristic forms, classes and numbers. 1.6. Some examples. 1.7. Bott vanishing theorem for foliations. 1.8. Chern-Weil theory in odd dimension. 1.9. References -- ch. 2. Bott and Duistermaat-Heckman formulas. 2.1. Berline-Vergne localization formula. 2.2. Bott residue formula. 2.3. Duistermaat-Heckman formula. 2.4. Bott's original idea. 2.5. References -- ch. 3. Gauss-Bonnet-Chern theorem. 3.1. A toy model and the Berezin integral. 3.2. Mathai-Quillen's Thom form. 3.3. A transgression formula. 3.4. Proof of the Gauss-Bonnet-Chern theorem. 3.5. Some remarks. 3.6. Chern's original proof. 3.7. References -- ch. 4. Poincaré-Hopf index formula: an analytic proof. 4.1. Review of Hodge theorem. 4.2. Poincaré-Hopf index formula. 4.3. Clifford actions and the Witten deformation. 4.4. An estimate outside of [symbol]. 4.5. Harmonic oscillators on Euclidean spaces. 4.6. A proof of the Poincaré-Hopf index formula. 4.7. Some estimates for [symbol]. 4.8. An alternate analytic proof. 4.9. References -- ch. 5. Morse inequalities: an analytic proof. 5.1. Review of Morse inequalities. 5.2. Witten deformation. 5.3. Hodge theorem for ([symbol]). 5.4. Behaviour of [symbol] near the critical points of f. 5.5. Proof of Morse inequalities. 5.6. Proof of proposition 5.5. 5.7. Some remarks and comments. 5.8. References -- ch. 6. Thom-Smale and Witten complexes. 6.1. The Thorn-Smale complex. 6.2. The de Rham map for Thom-Smale complexes. 6.3. Witten's instanton complex and the map [symbol]. 6.4. The map [symbol]. 6.5. An analytic proof of theorem 6.4. 6.6. References -- ch. 7. Atiyah theorem on Kervaire semi-characteristic. 7.1. Kervaire semi-characteristic. 7.2. Atiyah's original proof. 7.3. A proof via Witten deformation. 7.4. A generic counting formula for k(M). 7.5. Non-multiplicativity of k(M). 7.6. References.
Summary: This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to Shiing-shen Chern and André Weil, as well as a proof of the Gauss-Bonnet-Chern theorem based on the Mathai-Quillen construction of Thom forms; the second part presents analytic proofs of the Poincaré-Hopf index formula, as well as the Morse inequalities based on deformations introduced by Edward Witten.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books EBSCO Available

Includes bibliographical references and index.

Print version record.

Ch. 1. Chern-Weil theory for characteristic classes. 1.1. Review of the de Rham cohomology theory. 1.2. Connections on vector bundles. 1.3. The curvature of a connection. 1.4. Chern-Weil theorem. 1.5. Characteristic forms, classes and numbers. 1.6. Some examples. 1.7. Bott vanishing theorem for foliations. 1.8. Chern-Weil theory in odd dimension. 1.9. References -- ch. 2. Bott and Duistermaat-Heckman formulas. 2.1. Berline-Vergne localization formula. 2.2. Bott residue formula. 2.3. Duistermaat-Heckman formula. 2.4. Bott's original idea. 2.5. References -- ch. 3. Gauss-Bonnet-Chern theorem. 3.1. A toy model and the Berezin integral. 3.2. Mathai-Quillen's Thom form. 3.3. A transgression formula. 3.4. Proof of the Gauss-Bonnet-Chern theorem. 3.5. Some remarks. 3.6. Chern's original proof. 3.7. References -- ch. 4. Poincaré-Hopf index formula: an analytic proof. 4.1. Review of Hodge theorem. 4.2. Poincaré-Hopf index formula. 4.3. Clifford actions and the Witten deformation. 4.4. An estimate outside of [symbol]. 4.5. Harmonic oscillators on Euclidean spaces. 4.6. A proof of the Poincaré-Hopf index formula. 4.7. Some estimates for [symbol]. 4.8. An alternate analytic proof. 4.9. References -- ch. 5. Morse inequalities: an analytic proof. 5.1. Review of Morse inequalities. 5.2. Witten deformation. 5.3. Hodge theorem for ([symbol]). 5.4. Behaviour of [symbol] near the critical points of f. 5.5. Proof of Morse inequalities. 5.6. Proof of proposition 5.5. 5.7. Some remarks and comments. 5.8. References -- ch. 6. Thom-Smale and Witten complexes. 6.1. The Thorn-Smale complex. 6.2. The de Rham map for Thom-Smale complexes. 6.3. Witten's instanton complex and the map [symbol]. 6.4. The map [symbol]. 6.5. An analytic proof of theorem 6.4. 6.6. References -- ch. 7. Atiyah theorem on Kervaire semi-characteristic. 7.1. Kervaire semi-characteristic. 7.2. Atiyah's original proof. 7.3. A proof via Witten deformation. 7.4. A generic counting formula for k(M). 7.5. Non-multiplicativity of k(M). 7.6. References.

This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to Shiing-shen Chern and André Weil, as well as a proof of the Gauss-Bonnet-Chern theorem based on the Mathai-Quillen construction of Thom forms; the second part presents analytic proofs of the Poincaré-Hopf index formula, as well as the Morse inequalities based on deformations introduced by Edward Witten.

eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library