Amazon cover image
Image from Amazon.com

Selfsimilar processes / Paul Embrechts and Makoto Maejima.

By: Contributor(s): Material type: TextTextSeries: Princeton series in applied mathematicsPublication details: Princeton, N.J. : Princeton University Press, ©2002.Description: 1 online resource (x, 111 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 1400814243
  • 9781400814244
  • 9781400825103
  • 1400825105
Subject(s): Genre/Form: Additional physical formats: Print version:: Selfsimilar processes.DDC classification:
  • 519.23 21
LOC classification:
  • QA274.9 .E43 2002eb
Other classification:
  • SK 820
Online resources:
Contents:
Contents; Preface; Chapter 1. Introduction; Chapter 2. Some Historical Background; Chapter 3. Selfsimilar Processes with Stationary Increments; Chapter 4. Fractional Brownian Motion; Chapter 5. Selfsimilar Processes with Independent Increments; Chapter 6. Sample Path Properties of Selfsimilar Stable Processes with Stationary Increments; Chapter 7. Simulation of Selfsimilar Processes; Chapter 8. Statistical Estimation; Chapter 9. Extensions; References; Index.
Summary: The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity t.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books EBSCO Available

Includes bibliographical references (pages 101-108) and index.

Print version record.

Contents; Preface; Chapter 1. Introduction; Chapter 2. Some Historical Background; Chapter 3. Selfsimilar Processes with Stationary Increments; Chapter 4. Fractional Brownian Motion; Chapter 5. Selfsimilar Processes with Independent Increments; Chapter 6. Sample Path Properties of Selfsimilar Stable Processes with Stationary Increments; Chapter 7. Simulation of Selfsimilar Processes; Chapter 8. Statistical Estimation; Chapter 9. Extensions; References; Index.

The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity t.

In English.

eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library