Amazon cover image
Image from Amazon.com

Modeling Excitable Tissue [electronic resource] : The EMI Framework / edited by Aslak Tveito, Kent-Andre Mardal, Marie E. Rognes.

Contributor(s): Material type: TextTextSeries: Reports on Computational Physiology ; 7Publisher: Cham : Springer International Publishing : Imprint: Springer, 2021Edition: 1st ed. 2021Description: XVII, 100 p. 25 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783030611576
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 570.285 23
LOC classification:
  • QH323.5
  • QH324.2-324.25
Online resources:
Contents:
Derivation of a cell-based mathematical model of excitable cells -- A cell-based model for ionic electrodiffusion in excitable tissue -- Modeling cardiac mechanics on a subcellular scale -- Operator splitting and finite difference schemes for solving the EMI model -- Solving the EMI equations using finite element methods -- Iterative solvers for EMI models -- Improving neural simulations with the EMI model -- Index.
In: Springer Nature eBookSummary: This open access volume presents a novel computational framework for understanding how collections of excitable cells work. The key approach in the text is to model excitable tissue by representing the individual cells constituting the tissue. This is in stark contrast to the common approach where homogenization is used to develop models where the cells are not explicitly present. The approach allows for very detailed analysis of small collections of excitable cells, but computational challenges limit the applicability in the presence of large collections of cells.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books Open Access Available

Derivation of a cell-based mathematical model of excitable cells -- A cell-based model for ionic electrodiffusion in excitable tissue -- Modeling cardiac mechanics on a subcellular scale -- Operator splitting and finite difference schemes for solving the EMI model -- Solving the EMI equations using finite element methods -- Iterative solvers for EMI models -- Improving neural simulations with the EMI model -- Index.

Open Access

This open access volume presents a novel computational framework for understanding how collections of excitable cells work. The key approach in the text is to model excitable tissue by representing the individual cells constituting the tissue. This is in stark contrast to the common approach where homogenization is used to develop models where the cells are not explicitly present. The approach allows for very detailed analysis of small collections of excitable cells, but computational challenges limit the applicability in the presence of large collections of cells.

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library