Amazon cover image
Image from Amazon.com

Scattering parameters in RF and microwave circuit : analysis and design / Janusz A. Dobrowolski.

By: Material type: TextTextSeries: Artech House microwave libraryPublisher: Boston : Artech House, [2016]Description: 1 online resource (xv, 402 pages) : illustrationsContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781630813673
  • 1630813672
Subject(s): Genre/Form: Additional physical formats: Print version:: Scattering parameters in RF and microwave circuit.DDC classification:
  • 621.381/32 23
LOC classification:
  • TK7876 .D638 2016eb
Online resources: Abstract: Based on the popular Artech House title Microwave Network Design Using the Scattering Matrix, this authoritative resource provides comprehensive coverage of the wave approach to microwave network characterization, analysis, and design using scattering parameters. New topics include signal and noise analysis of differential microwave networks based on mixed mode wave variables, generalized mixed mode scattering, and generalized mixed mode noise wave scattering matrix.nThis one of a kind resource presents all aspects and topics related to the scattering matrix which have been developed and applied in microwave theory and practice. The book is an excellent source of theoretical information on the wave variables and scattering matrix and their application to microwave network characterization, modeling, analysis and design. This book demonstrates the approach of noise and signal analysis and how it is applicable to two port networks and their cascades, multi-ports and multi-element multiport networks with standard single-ended ports with differential ports and simultaneously with single-ended and differential ports. It is suitable for beginners, and students as well as experienced engineers and researchers working in the field of microwaves. Publisher abstract.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books EBSCO Available

Print version record.

Includes bibliographical references and index.

"Based on the popular Artech House title Microwave network design using the scattering matrix, this resource provides comprehensive coverage of the wave approach to microwave network characterization, analysis, and design using scattering parameters"--Page 4 of cover.

Based on the popular Artech House title Microwave Network Design Using the Scattering Matrix, this authoritative resource provides comprehensive coverage of the wave approach to microwave network characterization, analysis, and design using scattering parameters. New topics include signal and noise analysis of differential microwave networks based on mixed mode wave variables, generalized mixed mode scattering, and generalized mixed mode noise wave scattering matrix.nThis one of a kind resource presents all aspects and topics related to the scattering matrix which have been developed and applied in microwave theory and practice. The book is an excellent source of theoretical information on the wave variables and scattering matrix and their application to microwave network characterization, modeling, analysis and design. This book demonstrates the approach of noise and signal analysis and how it is applicable to two port networks and their cascades, multi-ports and multi-element multiport networks with standard single-ended ports with differential ports and simultaneously with single-ended and differential ports. It is suitable for beginners, and students as well as experienced engineers and researchers working in the field of microwaves. Publisher abstract.

eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library