Amazon cover image
Image from Amazon.com

Aircraft performance and sizing. Volume I, Fundamentals of aircraft performance / Timothy Takahashi.

By: Material type: TextTextSeries: Aerospace engineering collectionPublisher: New York [New York] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2016Description: 1 online resource (1 PDF (xvi, 230 pages)) : illustrationsContent type:
  • text
Media type:
  • electronic
Carrier type:
  • online resource
ISBN:
  • 9781606506844
  • 1606506846
  • 1606506838
  • 9781606506837
Other title:
  • Fundamentals of aircraft performance
Subject(s): Genre/Form: Additional physical formats: Print version:: No titleDDC classification:
  • 629.1341 23
LOC classification:
  • TL671.2 .T252 2016
Online resources:
Contents:
1. Introduction -- 1.1 Defining a clean-sheet design -- 1.2 Aircraft purpose, the explicit requirements -- 1.3 Certification, the implied requirements.
2. Flight mechanics basics -- 2.1 Reference units -- 2.2 Coordinate frames -- 2.3 Standard atmosphere -- 2.4 How pilots actually fly airplanes.
3. Propulsion system design drivers and performance -- 3.1 Gas turbine fundamentals -- 3.2 Calculating thrust and fuel flow -- 3.3 Propulsion system components and design drivers -- 3.4 Example engine performance data.
4. Aerodynamic analysis fundamentals: lift and drag -- 4.1 Full configuration drag estimation -- 4.2 Zero-lift drag at incompressible speeds -- 4.3 Zero-lift drag due to compressibility -- 4.4 Drag due to lift at incompressible speeds -- 4.5 Drag due to lift arising from compressibility -- 4.6 "Crud drag," the drag of real versus idealized aerostructures -- 4.7 Maximum lift coefficient/buffet boundary -- 4.8 Angle of attack -- 4.9 Take-off, approach, and landing aerodynamics.
5. Kinematic "point-performance" principles -- 5.1 Standard atmosphere revisited -- 5.2 Computing stall speed -- 5.3 Minimum and maximum permissible flight speeds -- 5.4 The energy-maneuverability skymap plot -- 5.5 Inferring lift and drag in an E-M plot -- 5.6 Aerodynamic efficiency (L/D) and performance efficiency (M(L/D)) -- 5.7 Dimensionalizing drag -- 5.8 Propulsive performance -- 5.9 Specific excess thrust and linear acceleration capability -- 5.10 Specific excess power, rate of climb (R.O.C.), and ceiling -- 5.11 Specific range -- 5.12 Loiter -- 5.13 Induced drag fraction of total drag for level flight limited by aerodynamics and propulsion -- 5.14 Maximum load factor, instantaneous turn rate and stall speed ratio -- 5.15 Combat agility, maximum sustained turn rate.
6. Mission performance principles -- 6.1 Breguet range equation -- 6.2 Time-step integrating simulations -- 6.3 Creating missions using a mission simulation code -- 6.4 Observations examining the output of a mission simulation code -- 6.5 Creating trade studies using a mission simulation code -- 6.6 Creating payload/range charts using a mission simulation code -- Index.
Abstract: This book is a concise practical treatise for the student or experienced professional aircraft designer. This volume comprises key fundamental subjects for aerodynamic performance analysis: the basics of flight mechanics bridging both engineering and piloting perspectives, propulsion system performance attributes, practical drag prediction methods, aircraft "up and away" flight performance and aircraft mission performance. This book may serve as a textbook for an undergraduate aircraft performance course or as a reference for the classically trained practicing engineer.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books EBSCO Available

Title from PDF title page (viewed on March 17, 2016).

Includes bibliographical references and index.

1. Introduction -- 1.1 Defining a clean-sheet design -- 1.2 Aircraft purpose, the explicit requirements -- 1.3 Certification, the implied requirements.

2. Flight mechanics basics -- 2.1 Reference units -- 2.2 Coordinate frames -- 2.3 Standard atmosphere -- 2.4 How pilots actually fly airplanes.

3. Propulsion system design drivers and performance -- 3.1 Gas turbine fundamentals -- 3.2 Calculating thrust and fuel flow -- 3.3 Propulsion system components and design drivers -- 3.4 Example engine performance data.

4. Aerodynamic analysis fundamentals: lift and drag -- 4.1 Full configuration drag estimation -- 4.2 Zero-lift drag at incompressible speeds -- 4.3 Zero-lift drag due to compressibility -- 4.4 Drag due to lift at incompressible speeds -- 4.5 Drag due to lift arising from compressibility -- 4.6 "Crud drag," the drag of real versus idealized aerostructures -- 4.7 Maximum lift coefficient/buffet boundary -- 4.8 Angle of attack -- 4.9 Take-off, approach, and landing aerodynamics.

5. Kinematic "point-performance" principles -- 5.1 Standard atmosphere revisited -- 5.2 Computing stall speed -- 5.3 Minimum and maximum permissible flight speeds -- 5.4 The energy-maneuverability skymap plot -- 5.5 Inferring lift and drag in an E-M plot -- 5.6 Aerodynamic efficiency (L/D) and performance efficiency (M(L/D)) -- 5.7 Dimensionalizing drag -- 5.8 Propulsive performance -- 5.9 Specific excess thrust and linear acceleration capability -- 5.10 Specific excess power, rate of climb (R.O.C.), and ceiling -- 5.11 Specific range -- 5.12 Loiter -- 5.13 Induced drag fraction of total drag for level flight limited by aerodynamics and propulsion -- 5.14 Maximum load factor, instantaneous turn rate and stall speed ratio -- 5.15 Combat agility, maximum sustained turn rate.

6. Mission performance principles -- 6.1 Breguet range equation -- 6.2 Time-step integrating simulations -- 6.3 Creating missions using a mission simulation code -- 6.4 Observations examining the output of a mission simulation code -- 6.5 Creating trade studies using a mission simulation code -- 6.6 Creating payload/range charts using a mission simulation code -- Index.

This book is a concise practical treatise for the student or experienced professional aircraft designer. This volume comprises key fundamental subjects for aerodynamic performance analysis: the basics of flight mechanics bridging both engineering and piloting perspectives, propulsion system performance attributes, practical drag prediction methods, aircraft "up and away" flight performance and aircraft mission performance. This book may serve as a textbook for an undergraduate aircraft performance course or as a reference for the classically trained practicing engineer.

eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library