Amazon cover image
Image from Amazon.com

Insect molecular genetics : an introduction to principles and applications / Marjorie A. Hoy.

By: Material type: TextTextPublisher: Amsterdam : Academic Press, [2013]Copyright date: ©2013Edition: Third editionDescription: 1 online resource (xxvii, 808 pages) : illustrations (some color)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780240821313
  • 0240821319
Subject(s): Genre/Form: Additional physical formats: Print version:: Insect molecular genetics.DDC classification:
  • 595.7 23
LOC classification:
  • QL493 .H69 2013
Online resources:
Contents:
Note continued: 9.3.P Elements and Hybrid Dysgenesis -- 9.4.P-Element Structure Varies -- 9.5. Transposition Method of P Elements -- 9.6. Origin of P Elements in D. melanogaster -- 9.7.P Vectors and Germ-Line Transformation -- 9.7.1. Protocols -- 9.7.2. Characterizing Transformants -- 9.8. Using P-Element Vectors -- 9.8.1. Transposon Tagging -- 9.8.2. Expressing Exogenous Genes -- 9.8.3. Evaluating Position Effects -- 9.8.4. Targeted Gene Transfer -- 9.9. Transformation of Other Insects with P Vectors -- 9.10. Evolution of Resistance to P Elements -- 9.11. Using P to Drive Genes into Populations -- 9.12. Relationship of P to Other Transposable Elements (TEs) -- 9.13. Other TEs Can Transform D. melanogaster -- 9.14. Improved Transformation Tools for Drosophila -- 9.15. TE Vectors to Transform Insects other than Drosophila -- 9.15.1.piggyBac -- 9.15.2. Hermes and Herves -- 9.15.3. Minos -- 9.15.4.mariner -- 9.15.5.hobo -- 9.16. Cross Mobilization of TE Vectors -- 9.17. Conversion of Inactive TE Vectors to Activity -- 9.18. Suppression of Transgene Expression -- 9.19. Other Transformation Methods -- 9.19.1. JcDNV Gene Vectors for Somatic Transformations v -- 9.19.2. RNAi for Drosophila -- 9.19.3. Zinc-Finger Nucleases (ZFNs) -- 9.19.4. Transcription Activator-Like Effector Nucleases (TALENs) -- 9.19.5. Meganucleases (or Homing Endonucleases) -- 9.19.6. Cell-Penetrating Peptides -- 9.19.7. Nanotechnology Approaches -- 9.20. Conclusions -- General References -- References Cited -- pt. III APPLICATIONS IN ENTOMOLOGY -- ch. 10 Sex Determination in Insects -- 10.1. Overview -- 10.2. Introduction -- 10.3. Costs and Benefits of Sexual Reproduction -- 10.3.1. Sexual Reproduction Has Costs -- 10.3.2. Advantages of Sex Must Be Large -- 10.3.3. Origin of Sex -- 10.4. Sex Determination Involves Soma and Germ-Line Tissues -- 10.5. Sex Determination in Drosophila melanogaster -- 10.5.1. Dosage Compensation of X Chromosomes -- 10.5.2. Somatic-Sex Determination -- 10.5.3. Germ-Line Determination -- 10.6. Are Sex-Determination Mechanisms Diverse? -- 10.6.1. Intraspecific Variability -- 10.6.2. Environmental Effects -- 10.6.3. Postzygotic Sex Determination -- 10.7.A Single Model? -- 10.8. Meiotic Drive Can Distort Sex Ratios -- 10.8.1. Segregation Distorter (SD) -- 10.8.2. Distorter in Mosquitoes -- 10.8.3. Female-Biased Sex Ratios in Stalk-Eyed Flies -- 10.8.4. Meiotic Drive as a Pest-Management Tool? -- 10.9. Hybrid Sterility -- 10.10. Medea in Tribolium -- 10.11. Cytoplasmic Agents Distort Normal Sex Ratios -- 10.11.1. Spiroplasma Strains -- 10.11.2.L-Form Bacteria -- 10.11.3. Rickettsia -- 10.11.4. Wolbachia -- 10.11.5. Cardinium -- 10.12. Paternal Sex-Ratio Chromosomes and Cytoplasmic Incompatibility in Nasonia -- 10.13. Male Killing in the Coccinellidae -- 10.14. Sex and the Sorted Insects -- 10.14.1. Genetic Control -- 10.14.2. Genetic Improvement of Parasitoids -- 10.15. Conclusion -- References Cited -- ch. 11 Molecular Genetics of Insect Behavior -- 11.1. Overview -- 11.2. Introduction -- 11.3. The Insect Nervous System -- 11.4. Traditional Genetic Analyses of Behavior -- 11.4.1. Crossing Experiments -- 11.4.2. Selection Experiments -- 11.4.3. Some Polygenically Determined Behaviors -- 11.5. Molecular-Genetic Analyses of Insect Behavior -- 11.5.1. The Photoperiodic Clock -- 11.5.2. Learning in Drosophila -- 11.5.3. Functional Genomics of Odor Behavior in Drosophila -- 11.5.4. Behavior of Apis mellifera -- 11.5.5. Pheromones in Insects -- 11.5.6. Neurobiochemistry of Drosophila -- 11.5.7. Divergent Functions of Est-6 and Est-5 in Two Drosophila Species: A Cautionary Tale of Homologs -- 11.5.8. Courtship Behavior in Drosophila -- 11.5.9. Speciation Genes in Drosophila and Other Insects -- 11.5.10. Personality in Insects: Tribolium confusum, Apis mellifera, Acyrthosiphon pisum, and Pyrrhocoris apterus -- 11.6. Symbionts and Insect Behavior -- 11.7. Human Neurodegenerative Diseases and Addictions in Drosophila -- 11.8. High-Throughput Ethomics -- 11.9. Systems Genetics of Complex Traits in Drosophila -- 11.10. Social Behavior in Bees and Ants -- 11.11. Conclusions -- References Cited -- ch. 12 Molecular Systematics and the Evolution of Arthropods -- 12.1. Overview -- 12.2. Introduction -- 12.3. Controversies in Molecular Systematics and Evolution -- 12.3.1. Molecular versus Morphological Traits -- 12.3.2. The Molecular Clock -- 12.3.3. The Neutral (or Nearly Neutral) Theory of Evolution -- 12.3.4. Homology and Similarity -- 12.4. Molecular Methods for Molecular Systematics and Evolution -- 12.4.1. Protein Electrophoresis -- 12.4.2. Molecular Cytology -- 12.4.3. Restriction Fragment Length Polymorphism (RFLP) Analysis -- 12.4.4. DNA and Genome Sequencing -- 12.4.5. Fragment Analyses of Genomic DNA -- 12.5. Targets of DNA Analysis -- 12.5.1. Mitochondria -- 12.5.2. Ribosomal RNA -- 12.5.3. Satellite DNA -- 12.5.4. Introns -- 12.5.5. Nuclear Protein-Coding Genes -- 12.5.6. Rare Genomic Changes -- 12.5.7. MicroRNAs -- 12.6. Steps in Phylogenetic Analysis of DNA Sequence Data -- 12.6.1. Gene Trees or Species Trees -- 12.6.2. Rooted or Unrooted Trees -- 12.6.3. Tree Types -- 12.6.4. Project Goals and Appropriate DNA Sequences -- 12.6.5. Sequence Comparisons with BLAST -- 12.6.6. Aligning Sequences -- 12.6.7. Constructing Phylogenies -- 12.6.8. Artifacts -- 12.6.9. Software Packages -- 12.7. The Universal Tree of Life -- 12.7.1. Two Domains -- 12.7.2. Three Domains -- 12.7.3. Origin of Eukaryota -- 12.8. The Fossil Record of Arthropods -- 12.9. Molecular Analyses of Arthropod Phylogeny -- 12.9.1. Evolution of the Ecdysozoa -- 12.9.2. Relationships among the Arthropoda -- 12.9.3. The Phylogeny of the Holometabola -- 12.9.4. Congruence Between Morphology- and Molecular-Based Trees -- 12.9.5. Genomes and Arthropod Phylogenies -- 12.10. Molecular Evolution and Speciation -- 12.10.1. Species Concepts -- 12.10.2. How Many Genes are Involved in Speciation? -- 12.10.3. Detecting Cryptic Species -- 12.11. Some Conclusions -- Relevant Journals -- References Cited -- ch. 13 Insect Population Ecology and Molecular Genetics -- 13.1. Overview -- 13.2. Introduction -- 13.3. What is Molecular Ecology? -- 13.4. Collecting Arthropods in the Field for Analysis -- 13.5. Molecular Ecological Methods -- 13.5.1. Allele-Specific PCR -- 13.5.2. Allozymes (Protein Electrophoresis) -- 13.5.3. Amplified Fragment Length Polymorphisms (AFLP-PCR) -- 13.5.4. Double-Strand Conformation Polymorphism (DSCP) -- 13.5.5. Heteroduplex Analysis (HDA) -- 13.5.6. Microarrays -- 13.5.7. Microsatellites -- 13.5.8. RFLP Analysis -- 13.5.9. PCR-RFLP -- 13.5.10. RAPD-PCR -- 13.5.11. Sequencing -- 13.5.12. Single Nucleotide Polymorphism (SNP) Markers -- 13.6. Analysis of Molecular Data -- 13.6.1. Allozymes -- 13.6.2. Microsatellites -- 13.6.3. RAPD-PCR -- 13.6.4. RFLPs -- 13.6.5. Sequencing -- 13.7. Case Studies in Molecular Ecology and Population Biology -- 13.7.1. Genetic Variability in the Fall Army worm: Incipient Species or Multiple Species? -- 13.7.2. Analyses of Natural Enemies -- 13.7.3. Population Isolation and Introgression in Periodical Cicadas -- 13.7.4. Eradicating Medflies in California? -- 13.7.5. Plant Defenses to Insect Herbivory -- 13.7.6. Origins of Insect Populations -- 13.8. Applied Pest Management -- 13.8.1. Monitoring Biotypes, Species, and Cryptic Species -- 13.8.2. Monitoring Vectors of Disease -- 13.8.3. Pesticide Resistances and Pest Management -- 13.8.4. Monitoring Pest-Population Biology -- 13.8.5. The "So What?" Test -- Relevant Journals -- References Cited -- ch. 14 Genetic Modification of Pest and Beneficial Insects for Pest-Management Programs -- 14.1. Overview -- 14.2. Introduction -- 14.3. Why Genetically Modify Insects? -- 14.3.1. Beneficial Insects -- 14.3.2. Pest Insects -- 14.4. Why Use Molecular-Genetic Methods? -- 14.5. What Genetic Modification Methods are Available? -- 14.5.1. Transposable-Element (TE) Vectors and Transgenesis -- 14.5.2. Paratransgenesis (Genetic Modification of Symbionts) -- 14.5.3. Viral Vectors -- 14.5.4. Transfer of Wolbachia from Another Arthropod -- 14.5.5. Site-Specific Modifications -- 14.5.6. No Vectors -- 14.5.7. RNAi to Control Pests -- 14.6. Methods to Deliver Exogenous Nucleic Acids into Arthropod Tissues -- 14.7. What Genes are Available? -- 14.8. Why are Regulatory Signals Important? -- 14.9. How are Modified Arthropods Identified? -- 14.10. How to Deploy Genetically Modified Pest and Beneficial Arthropods -- 14.11.
Potential Risks Associated with Releases of Genetically Modified Arthropods -- 14.11.1. Could Gene Silencing Reduce Program Effectiveness? -- 14.11.2. Relative Risks -- 14.11.3. General Risk Issues -- 14.11.4. Horizontal Transfer (HT) -- 14.12. Permanent Releases of Genetically Modified Arthropods into the Environment -- 14.12.1. Models to Predict? -- 14.13. Regulatory Issues: Releases of Genetically Modified Arthropods -- 14.14. Conclusions -- References Cited.
Summary: This book summarizes and synthesizes two rather disparate disciplines-entomology and molecular genetics. It provides an introduction to the techniques and literature of molecular genetics; defines terminology; and reviews concepts, principles, and applications of these powerful tools.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Materials specified Status Date due Barcode
Electronic-Books Electronic-Books OPJGU Sonepat- Campus E-Books EBSCO Available

Includes bibliographical references and index.

Print version record.

880-01 Note continued: 9.3.P Elements and Hybrid Dysgenesis -- 9.4.P-Element Structure Varies -- 9.5. Transposition Method of P Elements -- 9.6. Origin of P Elements in D. melanogaster -- 9.7.P Vectors and Germ-Line Transformation -- 9.7.1. Protocols -- 9.7.2. Characterizing Transformants -- 9.8. Using P-Element Vectors -- 9.8.1. Transposon Tagging -- 9.8.2. Expressing Exogenous Genes -- 9.8.3. Evaluating Position Effects -- 9.8.4. Targeted Gene Transfer -- 9.9. Transformation of Other Insects with P Vectors -- 9.10. Evolution of Resistance to P Elements -- 9.11. Using P to Drive Genes into Populations -- 9.12. Relationship of P to Other Transposable Elements (TEs) -- 9.13. Other TEs Can Transform D. melanogaster -- 9.14. Improved Transformation Tools for Drosophila -- 9.15. TE Vectors to Transform Insects other than Drosophila -- 9.15.1.piggyBac -- 9.15.2. Hermes and Herves -- 9.15.3. Minos -- 9.15.4.mariner -- 9.15.5.hobo -- 9.16. Cross Mobilization of TE Vectors -- 9.17. Conversion of Inactive TE Vectors to Activity -- 9.18. Suppression of Transgene Expression -- 9.19. Other Transformation Methods -- 9.19.1. JcDNV Gene Vectors for Somatic Transformations v -- 9.19.2. RNAi for Drosophila -- 9.19.3. Zinc-Finger Nucleases (ZFNs) -- 9.19.4. Transcription Activator-Like Effector Nucleases (TALENs) -- 9.19.5. Meganucleases (or Homing Endonucleases) -- 9.19.6. Cell-Penetrating Peptides -- 9.19.7. Nanotechnology Approaches -- 9.20. Conclusions -- General References -- References Cited -- pt. III APPLICATIONS IN ENTOMOLOGY -- ch. 10 Sex Determination in Insects -- 10.1. Overview -- 10.2. Introduction -- 10.3. Costs and Benefits of Sexual Reproduction -- 10.3.1. Sexual Reproduction Has Costs -- 10.3.2. Advantages of Sex Must Be Large -- 10.3.3. Origin of Sex -- 10.4. Sex Determination Involves Soma and Germ-Line Tissues -- 10.5. Sex Determination in Drosophila melanogaster -- 10.5.1. Dosage Compensation of X Chromosomes -- 10.5.2. Somatic-Sex Determination -- 10.5.3. Germ-Line Determination -- 10.6. Are Sex-Determination Mechanisms Diverse? -- 10.6.1. Intraspecific Variability -- 10.6.2. Environmental Effects -- 10.6.3. Postzygotic Sex Determination -- 10.7.A Single Model? -- 10.8. Meiotic Drive Can Distort Sex Ratios -- 10.8.1. Segregation Distorter (SD) -- 10.8.2. Distorter in Mosquitoes -- 10.8.3. Female-Biased Sex Ratios in Stalk-Eyed Flies -- 10.8.4. Meiotic Drive as a Pest-Management Tool? -- 10.9. Hybrid Sterility -- 10.10. Medea in Tribolium -- 10.11. Cytoplasmic Agents Distort Normal Sex Ratios -- 10.11.1. Spiroplasma Strains -- 10.11.2.L-Form Bacteria -- 10.11.3. Rickettsia -- 10.11.4. Wolbachia -- 10.11.5. Cardinium -- 10.12. Paternal Sex-Ratio Chromosomes and Cytoplasmic Incompatibility in Nasonia -- 10.13. Male Killing in the Coccinellidae -- 10.14. Sex and the Sorted Insects -- 10.14.1. Genetic Control -- 10.14.2. Genetic Improvement of Parasitoids -- 10.15. Conclusion -- References Cited -- ch. 11 Molecular Genetics of Insect Behavior -- 11.1. Overview -- 11.2. Introduction -- 11.3. The Insect Nervous System -- 11.4. Traditional Genetic Analyses of Behavior -- 11.4.1. Crossing Experiments -- 11.4.2. Selection Experiments -- 11.4.3. Some Polygenically Determined Behaviors -- 11.5. Molecular-Genetic Analyses of Insect Behavior -- 11.5.1. The Photoperiodic Clock -- 11.5.2. Learning in Drosophila -- 11.5.3. Functional Genomics of Odor Behavior in Drosophila -- 11.5.4. Behavior of Apis mellifera -- 11.5.5. Pheromones in Insects -- 11.5.6. Neurobiochemistry of Drosophila -- 11.5.7. Divergent Functions of Est-6 and Est-5 in Two Drosophila Species: A Cautionary Tale of Homologs -- 11.5.8. Courtship Behavior in Drosophila -- 11.5.9. Speciation Genes in Drosophila and Other Insects -- 11.5.10. Personality in Insects: Tribolium confusum, Apis mellifera, Acyrthosiphon pisum, and Pyrrhocoris apterus -- 11.6. Symbionts and Insect Behavior -- 11.7. Human Neurodegenerative Diseases and Addictions in Drosophila -- 11.8. High-Throughput Ethomics -- 11.9. Systems Genetics of Complex Traits in Drosophila -- 11.10. Social Behavior in Bees and Ants -- 11.11. Conclusions -- References Cited -- ch. 12 Molecular Systematics and the Evolution of Arthropods -- 12.1. Overview -- 12.2. Introduction -- 12.3. Controversies in Molecular Systematics and Evolution -- 12.3.1. Molecular versus Morphological Traits -- 12.3.2. The Molecular Clock -- 12.3.3. The Neutral (or Nearly Neutral) Theory of Evolution -- 12.3.4. Homology and Similarity -- 12.4. Molecular Methods for Molecular Systematics and Evolution -- 12.4.1. Protein Electrophoresis -- 12.4.2. Molecular Cytology -- 12.4.3. Restriction Fragment Length Polymorphism (RFLP) Analysis -- 12.4.4. DNA and Genome Sequencing -- 12.4.5. Fragment Analyses of Genomic DNA -- 12.5. Targets of DNA Analysis -- 12.5.1. Mitochondria -- 12.5.2. Ribosomal RNA -- 12.5.3. Satellite DNA -- 12.5.4. Introns -- 12.5.5. Nuclear Protein-Coding Genes -- 12.5.6. Rare Genomic Changes -- 12.5.7. MicroRNAs -- 12.6. Steps in Phylogenetic Analysis of DNA Sequence Data -- 12.6.1. Gene Trees or Species Trees -- 12.6.2. Rooted or Unrooted Trees -- 12.6.3. Tree Types -- 12.6.4. Project Goals and Appropriate DNA Sequences -- 12.6.5. Sequence Comparisons with BLAST -- 12.6.6. Aligning Sequences -- 12.6.7. Constructing Phylogenies -- 12.6.8. Artifacts -- 12.6.9. Software Packages -- 12.7. The Universal Tree of Life -- 12.7.1. Two Domains -- 12.7.2. Three Domains -- 12.7.3. Origin of Eukaryota -- 12.8. The Fossil Record of Arthropods -- 12.9. Molecular Analyses of Arthropod Phylogeny -- 12.9.1. Evolution of the Ecdysozoa -- 12.9.2. Relationships among the Arthropoda -- 12.9.3. The Phylogeny of the Holometabola -- 12.9.4. Congruence Between Morphology- and Molecular-Based Trees -- 12.9.5. Genomes and Arthropod Phylogenies -- 12.10. Molecular Evolution and Speciation -- 12.10.1. Species Concepts -- 12.10.2. How Many Genes are Involved in Speciation? -- 12.10.3. Detecting Cryptic Species -- 12.11. Some Conclusions -- Relevant Journals -- References Cited -- ch. 13 Insect Population Ecology and Molecular Genetics -- 13.1. Overview -- 13.2. Introduction -- 13.3. What is Molecular Ecology? -- 13.4. Collecting Arthropods in the Field for Analysis -- 13.5. Molecular Ecological Methods -- 13.5.1. Allele-Specific PCR -- 13.5.2. Allozymes (Protein Electrophoresis) -- 13.5.3. Amplified Fragment Length Polymorphisms (AFLP-PCR) -- 13.5.4. Double-Strand Conformation Polymorphism (DSCP) -- 13.5.5. Heteroduplex Analysis (HDA) -- 13.5.6. Microarrays -- 13.5.7. Microsatellites -- 13.5.8. RFLP Analysis -- 13.5.9. PCR-RFLP -- 13.5.10. RAPD-PCR -- 13.5.11. Sequencing -- 13.5.12. Single Nucleotide Polymorphism (SNP) Markers -- 13.6. Analysis of Molecular Data -- 13.6.1. Allozymes -- 13.6.2. Microsatellites -- 13.6.3. RAPD-PCR -- 13.6.4. RFLPs -- 13.6.5. Sequencing -- 13.7. Case Studies in Molecular Ecology and Population Biology -- 13.7.1. Genetic Variability in the Fall Army worm: Incipient Species or Multiple Species? -- 13.7.2. Analyses of Natural Enemies -- 13.7.3. Population Isolation and Introgression in Periodical Cicadas -- 13.7.4. Eradicating Medflies in California? -- 13.7.5. Plant Defenses to Insect Herbivory -- 13.7.6. Origins of Insect Populations -- 13.8. Applied Pest Management -- 13.8.1. Monitoring Biotypes, Species, and Cryptic Species -- 13.8.2. Monitoring Vectors of Disease -- 13.8.3. Pesticide Resistances and Pest Management -- 13.8.4. Monitoring Pest-Population Biology -- 13.8.5. The "So What?" Test -- Relevant Journals -- References Cited -- ch. 14 Genetic Modification of Pest and Beneficial Insects for Pest-Management Programs -- 14.1. Overview -- 14.2. Introduction -- 14.3. Why Genetically Modify Insects? -- 14.3.1. Beneficial Insects -- 14.3.2. Pest Insects -- 14.4. Why Use Molecular-Genetic Methods? -- 14.5. What Genetic Modification Methods are Available? -- 14.5.1. Transposable-Element (TE) Vectors and Transgenesis -- 14.5.2. Paratransgenesis (Genetic Modification of Symbionts) -- 14.5.3. Viral Vectors -- 14.5.4. Transfer of Wolbachia from Another Arthropod -- 14.5.5. Site-Specific Modifications -- 14.5.6. No Vectors -- 14.5.7. RNAi to Control Pests -- 14.6. Methods to Deliver Exogenous Nucleic Acids into Arthropod Tissues -- 14.7. What Genes are Available? -- 14.8. Why are Regulatory Signals Important? -- 14.9. How are Modified Arthropods Identified? -- 14.10. How to Deploy Genetically Modified Pest and Beneficial Arthropods -- 14.11.

Potential Risks Associated with Releases of Genetically Modified Arthropods -- 14.11.1. Could Gene Silencing Reduce Program Effectiveness? -- 14.11.2. Relative Risks -- 14.11.3. General Risk Issues -- 14.11.4. Horizontal Transfer (HT) -- 14.12. Permanent Releases of Genetically Modified Arthropods into the Environment -- 14.12.1. Models to Predict? -- 14.13. Regulatory Issues: Releases of Genetically Modified Arthropods -- 14.14. Conclusions -- References Cited.

This book summarizes and synthesizes two rather disparate disciplines-entomology and molecular genetics. It provides an introduction to the techniques and literature of molecular genetics; defines terminology; and reviews concepts, principles, and applications of these powerful tools.

eBooks on EBSCOhost EBSCO eBook Subscription Academic Collection - Worldwide

There are no comments on this title.

to post a comment.

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library