Physical Metallurgy of High Manganese Steels

Bleck, Wolfgang

Physical Metallurgy of High Manganese Steels - MDPI - Multidisciplinary Digital Publishing Institute 2019 - 1 electronic resource (212 p.)

Open Access

The Special Issue 'Physical Metallurgy of High Manganese Steels' addresses the highly fascinating class of manganese-alloyed steels with manganese contents well above 3 mass%. The book gathers manuscripts from internationally recognized researchers with stimulating new ideas and original results. It consists of fifteen original research papers. Seven contributions focus on steels with manganese contents above 12 mass%. These contributions cover fundamental aspects of process-microstrcuture-properties relationships with processes ranging from cold and warm rolling over deep rolling to heat treatment. Novel findings regarding the fatigue and fracture behavior, deformation mechanisms, and computer-aided design are presented. Additionally, the Special Issue also reflects the current trend of reduced Mn content (3-12 mass%) in advanced high strength steels (AHSS). Eight contributions were dedicated to these alloys, which are often referred to as 3rd generation AHSS, medium manganese steels or quenching and partitioning (Q&P/Q+P) steels. The interplay between advanced processing, mainly novel annealing variants, and microstructure evolution has been addressed using computational and experimental approaches. A deeper understanding of strain-rate sensitivity, hydrogen embrittlement, phase transformations, and the consequences for the materials' properties has been developed. Hence, the topics included are manifold, fundamental-science oriented and, at the same time, relevant to industrial application.


Creative Commons


English

books978-3-03921-857-8 9783039218561 9783039218578

10.3390/books978-3-03921-857-8 doi

n/a TRIP microstructure medium-manganese steel dislocation density V alloying ultrafine grains intercritical annealing medium manganese steel fracture precipitations twinning induced plasticity deformation behavior fatigue austenite-reversed-transformation medium-manganese Lüders band medium-Mn steel fatigue behavior alloy design austenitic high nitrogen steel (HNS) high-entropy alloys mechanical properties retained austenite high-manganese steel localized deformation phase transformation austenite stability processing strain-hardening behavior TWIP steel recrystallization annealing damage strengthening cold rolling ultrafine-grained microstructure serrated flow multiscale simulation deformation twinning annealing high-Mn steels corrosion resistance TWIP quenching and partitioning high manganese steel lightweight residual stresses in-situ DIC tensile tests crash box deep rolling high strength steel plastic deformation MMn steel X20CrNiMnVN18-5-10 neutron diffraction phase field simulation dynamic strain aging cold deformation near surface properties P steel continuous annealing texture hydrogen embrittlement hot-stamping warm rolling strain-rate sensitivity austenite reversion D& forging high-manganese steels grain refinement double soaking

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library