Smart Materials and Devices for Energy Harvesting

Davino, Daniele

Smart Materials and Devices for Energy Harvesting - Basel MDPI - Multidisciplinary Digital Publishing Institute 2022 - 1 electronic resource (218 p.)

Open Access

This book is devoted to energy harvesting from smart materials and devices. It focusses on the latest available techniques recently published by researchers all over the world. Energy Harvesting allows otherwise wasted environmental energy to be converted into electric energy, such as vibrations, wind and solar energy. It is a common experience that the limiting factor for wearable electronics, such as smartphones or wearable bands, or for wireless sensors in harsh environments, is the finite energy stored in onboard batteries. Therefore, the answer to the battery "charge or change" issue is energy harvesting because it converts the energy in the precise location where it is needed. In order to achieve this, suitable smart materials are needed, such as piezoelectrics or magnetostrictives. Moreover, energy harvesting may also be exploited for other crucial applications, such as for the powering of implantable medical/sensing devices for humans and animals. Therefore, energy harvesting from smart materials will become increasingly important in the future. This book provides a broad perspective on this topic for researchers and readers with both physics and engineering backgrounds.


Creative Commons


English

books978-3-0365-3123-6 9783036531229 9783036531236

10.3390/books978-3-0365-3123-6 doi


Technology: general issues
History of engineering & technology

magnetostrictive energy harvesting wearable magnetostrictive materials Galfenol finite element model iron-gallium measurements preisach model piezoelectric ceramics lead-free piezoceramics virtual instrument 3D electrospinning PVDF fibers piezoelectricity piezoelectric sensing wind energy harvesting snap-through motion dynamic stability variable-speed double-clamped width shapes piezoelectric energy harvester electrodes pair MEMS structure finite element method open circuit voltage moving load layered double hydroxide solar cell (LDHSC) photoactive material UV-Vis absorption dye sensitized solar cell (DSSC) photoactive layered double hydroxide (LDH) transition metal modification optical bandgap analysis renewable energy photovoltaic device design iron (Fe) modified MgFeAl LDH triboelectric effect polymer and composites low-power devices thermomagnetic energy generators power generation waste heat recovery lumped-element modelling magnetic shape memory films Ni-Mn-Ga film magnetization change Curie temperature finite element simulation piezoelectric unit distributions electrical potential and energy von Mises stress PVDF piezoelectric material human body movements glass fiber-reinforced polymer composite multifunctional structural laminate thermal energy harvesting through-thickness thermal gradient thermoelectric generator (TEG) n/a

O.P. Jindal Global University, Sonepat-Narela Road, Sonepat, Haryana (India) - 131001

Send your feedback to glus@jgu.edu.in

Hosted, Implemented & Customized by: BestBookBuddies   |   Maintained by: Global Library